STRINGSTRING
parC protein (Klebsiella pneumoniae) - STRING interaction network
"parC" - DNA topoisomerase 4 subunit A in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
parCDNA topoisomerase 4 subunit A; Topoisomerase IV is essential for chromosome segregation. It relaxes supercoiled DNA. Performs the decatenation events required during the replication of a circular DNA molecule; Belongs to the type II topoisomerase GyrA/ParC subunit family. ParC type 1 subfamily (752 aa)    
Predicted Functional Partners:
gyrB
DNA gyrase subunit B; Negatively supercoils closed circular double-stranded DNA; Derived by automated computational analysis using gene prediction method- Protein Homology (804 aa)
 
  0.977
JG24_21670
Topoisomerase IV subunit B; Decatenates newly replicated chromosomal DNA and relaxes positive and negative DNA supercoiling; Derived by automated computational analysis using gene prediction method- Protein Homology (631 aa)
 
  0.976
mukB
SMC (structural maintenance of chromosomes) family of proteins; involved in chromosome condensatin and partitioning; forms a homodimer and the C-terminal is essential for DNA-binding activity while the purified N-terminal domain binds FtsZ; mutations result in cell division defects; Derived by automated computational analysis using gene prediction method- Protein Homology (1482 aa)
       
      0.922
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (677 aa)
 
 
  0.779
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates; beta subunit is part of the catalytic core which binds with a sigma factor to produce the holoenzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (1342 aa)
     
 
  0.778
JG24_07100
Cell division protein FtsK; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the FtsK/SpoIIIE/SftA family (1373 aa)
   
 
  0.762
JG24_21640
Uncharacterized protein ygiV; Derived by automated computational analysis using gene prediction method- Protein Homology (289 aa)
     
 
  0.734
JG24_27225
UvrABC system protein A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (941 aa)
 
   
  0.721
uvrB
UvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...] (673 aa)
 
   
  0.707
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (352 aa)
 
 
  0.683
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (11%) [HD]