STRINGSTRING
fadH protein (Klebsiella pneumoniae) - STRING interaction network
"fadH" - 2,4-dienoyl-CoA reductase in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fadH2,4-dienoyl-CoA reductase; Catalyzes the formation of trans-2- enoyl-CoA from 2,4-dienoyl-CoA; Derived by automated computational analysis using gene prediction method- Protein Homology (673 aa)    
Predicted Functional Partners:
JG24_19770
Detoxifies nitric oxide using NADH; Derived by automated computational analysis using gene prediction method- Protein Homology (482 aa)
   
 
  0.880
fadB
Multifunctional fatty acid oxidation complex subunit alpha; Includes enoyl-CoA hydratase, delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase, 3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxybutyryl-CoA epimerase; catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA; also exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities; forms a heterotetramer with FadA; similar to FadI2J2 complex; functions in beta-oxidation of fatty acids; Derived by automated computational analysis using gene prediction method- Protein Homology (729 aa)
 
   
  0.777
fadJ
Multifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-hydroxybutyryl-CoA epimerase; catalyzes the formation of an hydroxyacyl-CoA by addition of water on enoyl-CoA; exhibits 3-hydroxyacyl-CoA epimerase and 3-hydroxyacyl-CoA dehydrogenase activities- forms a heterotetramer with FadI; similar to FadA2B2 complex; involved in the anaerobic degradation of long and medium-chain fatty acids in the presence of nitrate; Derived by automated computational analysis using gene prediction method- Protein Homology (714 aa)
 
   
  0.761
gltB
Glutamate synthase [NADPH] large chain; Catalyzes the formation of glutamate from glutamine and alpha-ketoglutarate; Derived by automated computational analysis using gene prediction method- Protein Homology (1486 aa)
         
  0.750
putA
Transcriptional regulator; Proline utilization protein A; multifunctional protein that functions in proline catabolism in the first two enzymatic steps resulting in the conversion of proline to glutamate; in Escherichai coli this protein also self-regulates transcription via a DNA-binding domain at the N-terminus; forms dimers and is a peripherally membrane-associated protein; Derived by automated computational analysis using gene prediction method- Protein Homology (1320 aa)
         
  0.709
JG24_16870
Derived by automated computational analysis using gene prediction method- Protein Homology (363 aa)
           
  0.685
mnmC
FAD-dependent oxidoreductase; 5-methylaminomethyl-2-thiouridine-forming enzyme methyltransferase/FAD-dependent demodification enzyme; Derived by automated computational analysis using gene prediction method- Protein Homology (662 aa)
     
 
  0.637
gidA
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family (629 aa)
   
 
  0.636
JG24_15070
Derived by automated computational analysis using gene prediction method- Protein Homology (957 aa)
   
 
  0.597
adhP
Alcohol dehydrogenase; Similar to zinc-dependent eukaryotic ADH enzymes and distinct from fermentative ADHs; Derived by automated computational analysis using gene prediction method- Protein Homology (336 aa)
   
 
  0.570
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (4%) [HD]