STRINGSTRING
def protein (Klebsiella pneumoniae) - STRING interaction network
"def" - Peptide deformylase in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
defPeptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions (169 aa)    
Predicted Functional Partners:
fmt
Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (315 aa)
 
  0.994
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (118 aa)
 
 
  0.994
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (75 aa)
 
 
      0.987
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body; Belongs to the universal ribosomal protein uS5 family (167 aa)
   
 
  0.986
rpmI
50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bL35 family (65 aa)
   
      0.986
rpsU
30S ribosomal protein S21; A small basic protein that is one of the last in the subunit assembly; omission does not prevent assembly but the subunit is inactive; binds central domain of 16S rRNA; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bS21 family (71 aa)
     
      0.985
rpmH
50S ribosomal protein L34; In Escherichia coli transcription of this gene is enhanced by polyamines; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bL34 family (46 aa)
       
 
  0.984
rplU
50S ribosomal protein L21; Derived by automated computational analysis using gene prediction method- Protein Homology (103 aa)
 
 
  0.965
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (149 aa)
 
 
  0.959
rpmA
50S ribosomal protein L27; Involved in the peptidyltransferase reaction during translation; Derived by automated computational analysis using gene prediction method- Protein Homology (85 aa)
 
 
  0.953
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (15%) [HD]