STRINGSTRING
polA protein (Klebsiella pneumoniae) - STRING interaction network
"polA" - DNA polymerase I in Klebsiella pneumoniae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
polADNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (930 aa)    
Predicted Functional Partners:
JG24_25485
DNA polymerase III beta subunit; Binds the polymerase to DNA and acts as a sliding clamp; Derived by automated computational analysis using gene prediction method- Protein Homology (366 aa)
 
 
  0.968
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (352 aa)
 
 
  0.959
recG
ATP-dependent DNA helicase RecG; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (693 aa)
 
 
  0.908
JG24_26575
ATP-dependent DNA helicase RecQ; Functions in blocking illegitimate recombination, enhancing topoisomerase activity, initiating SOS signaling and clearing blocked replication forks; component of the RecF recombinational pathway; Derived by automated computational analysis using gene prediction method- Protein Homology (608 aa)
   
 
  0.893
thyA
Thymidylate synthase; Catalyzes the reductive methylation of 2’-deoxyuridine- 5’-monophosphate (dUMP) to 2’-deoxythymidine-5’-monophosphate (dTMP) while utilizing 5,10-methylenetetrahydrofolate (mTHF) as the methyl donor and reductant in the reaction, yielding dihydrofolate (DHF) as a by-product. This enzymatic reaction provides an intracellular de novo source of dTMP, an essential precursor for DNA biosynthesis (264 aa)
   
   
  0.889
JG24_07100
Cell division protein FtsK; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the FtsK/SpoIIIE/SftA family (1373 aa)
 
 
  0.887
JG24_29705
Has polymerase, DNA-binding and 3’-5’ exonuclease activities. In Aeropyrum pernix this protein is sensitive to aphidicolin and stable at 95#C; Derived by automated computational analysis using gene prediction method- Protein Homology (785 aa)
     
 
  0.877
JG24_20020
DNA mismatch repair protein MutS; This protein performs the mismatch recognition step during the DNA repair process; Derived by automated computational analysis using gene prediction method- Protein Homology (853 aa)
 
 
  0.872
metG
Methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation; Belongs to the class-I aminoacyl-tRNA synthetase family. MetG type 1 subfamily (677 aa)
   
 
  0.872
JG24_27905
DNA mismatch repair protein MutL; Derived by automated computational analysis using gene prediction method- Protein Homology (619 aa)
   
 
  0.870
Your Current Organism:
Klebsiella pneumoniae
NCBI taxonomy Id: 573
Other names: ATCC 13883, Bacillus pneumoniae, Bacterium pneumoniae crouposae, CCUG 225, CIP 82.91, DSM 30104, HAMBI 450, Hyalococcus pneumoniae, IFO 14940, K. pneumoniae, Klebsiella pneumoniae, Klebsiella sp. M-AI-2, Klebsiella sp. PB12, Klebsiella sp. RCE-7, LMG 2095, NBRC 14940, NCTC 9633
Server load: low (4%) [HD]