STRINGSTRING
rpoS protein (Yersinia pseudotuberculosis) - STRING interaction network
rpoS_proteo: RNA polymerase sigma factor RpoS in Yersinia pseudotuberculosis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpoSrpoS_proteo- RNA polymerase sigma factor RpoS (332 aa)    
Predicted Functional Partners:
nlpD
annotation not available (327 aa)
 
   
  0.950
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (91 aa)
   
 
  0.949
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (329 aa)
   
 
  0.942
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1342 aa)
 
 
  0.939
pcm
Protein-L-isoaspartate O-methyltransferase; Catalyzes the methyl esterification of L-isoaspartyl residues in peptides and proteins that result from spontaneous decomposition of normal L-aspartyl and L-asparaginyl residues. It plays a role in the repair and/or degradation of damaged proteins (208 aa)
       
  0.900
rpoN
RNA polymerase sigma-54 factor; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released (477 aa)
           
  0.875
secA
Protein translocase subunit SecA; Part of the Sec protein translocase complex. Interacts with the SecYEG preprotein conducting channel. Has a central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the cell membrane, serving both as a receptor for the preprotein-SecB complex and as an ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across the membrane (904 aa)
 
 
  0.857
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (804 aa)
 
 
  0.823
rpoE
rpoE_Sigma70- RNA polymerase sigma factor RpoE; Belongs to the sigma-70 factor family. ECF subfamily (191 aa)
     
 
  0.813
surE
5’/3’-nucleotidase SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5’- monophosphates and ribonucleoside 3’-monophosphates with highest affinity to 3’-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain- length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3’-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs (254 aa)
         
  0.808
Your Current Organism:
Yersinia pseudotuberculosis
NCBI taxonomy Id: 633
Other names: ATCC 29833, Bacillus pseudotuberkulosis, Bacterium pseudotuberculosis, CCUG 5855, CIP 55.85, DSM 8992, NCTC 10275, Pasteurella pseudotuberculosis, Shigella pseudotuberculosis, Y. pseudotuberculosis, Yersinia pseudotuberculosis
Server load: low (14%) [HD]