STRINGSTRING
DJ40_1880 protein (Yersinia pseudotuberculosis) - STRING interaction network
"DJ40_1880" - annotation not available in Yersinia pseudotuberculosis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DJ40_1880annotation not available (212 aa)    
Predicted Functional Partners:
nuoC
NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the C-terminal section; belongs to the complex I 49 kDa subunit family (598 aa)
   
 
  0.976
nuoF
NADH-quinone oxidoreductase subunit F; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain; Belongs to the complex I 51 kDa subunit family (461 aa)
     
      0.772
yhjJ
annotation not available (499 aa)
     
 
  0.754
nuoG
NADH-quinone oxidoreductase; nuoG- NADH dehydrogenase (quinone), G subunit (914 aa)
     
 
  0.748
nuoE
annotation not available (187 aa)
     
 
  0.713
atpG
ATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (287 aa)
     
        0.702
nuoB
NADH-quinone oxidoreductase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (225 aa)
   
 
  0.679
atpH
ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (177 aa)
     
        0.669
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (180 aa)
     
 
  0.629
DJ40_741
annotation not available (82 aa)
   
 
  0.572
Your Current Organism:
Yersinia pseudotuberculosis
NCBI taxonomy Id: 633
Other names: ATCC 29833, Bacillus pseudotuberkulosis, Bacterium pseudotuberculosis, CCUG 5855, CIP 55.85, DSM 8992, NCTC 10275, Pasteurella pseudotuberculosis, Shigella pseudotuberculosis, Y. pseudotuberculosis, Yersinia pseudotuberculosis
Server load: low (15%) [HD]