STRINGSTRING
glmU protein (Yersinia pseudotuberculosis) - STRING interaction network
"glmU" - Bifunctional protein GlmU in Yersinia pseudotuberculosis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmUBifunctional protein GlmU; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP- GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5- monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain (456 aa)    
Predicted Functional Partners:
glmM
Phosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family (446 aa)
 
  0.995
glmS
Glutamine--fructose-6-phosphate aminotransferase [isomerizing]; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source (609 aa)
 
  0.991
murA
UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily (420 aa)
 
  0.966
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib-5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily (315 aa)
   
  0.954
wecB
UDP-N-acetylglucosamine 2-epimerase; Catalyzes the reversible epimerization at C-2 of UDP-N- acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP-N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues (376 aa)
   
 
  0.926
lpxA
Acyl-[acyl-carrier-protein]--UDP-N-acetylglucosamine O-acyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell (262 aa)
   
 
  0.910
pta
Phosphate acetyltransferase; Involved in acetate metabolism; In the N-terminal section; belongs to the CobB/CobQ family (717 aa)
   
 
  0.886
udp
Uridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1- phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis; Belongs to the PNP/UDP phosphorylase family (253 aa)
         
  0.781
nagB
Glucosamine-6-phosphate deaminase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion (266 aa)
   
   
  0.751
rapZ
RNase adapter protein RapZ; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6-phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS (284 aa)
   
   
  0.695
Your Current Organism:
Yersinia pseudotuberculosis
NCBI taxonomy Id: 633
Other names: ATCC 29833, Bacillus pseudotuberkulosis, Bacterium pseudotuberculosis, CCUG 5855, CIP 55.85, DSM 8992, NCTC 10275, Pasteurella pseudotuberculosis, Shigella pseudotuberculosis, Y. pseudotuberculosis, Yersinia pseudotuberculosis
Server load: low (16%) [HD]