node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SDB12722.1 | SDB30476.1 | SAMN02982931_00951 | SAMN02982931_02312 | NADH dehydrogenase subunit M. | Heptosyltransferase-1. | 0.922 |
SDB12722.1 | SDB44762.1 | SAMN02982931_00951 | SAMN02982931_03420 | NADH dehydrogenase subunit M. | ADP-heptose:LPS heptosyltransferase. | 0.922 |
SDB12722.1 | nuoA | SAMN02982931_00951 | SAMN02982931_00938 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.999 |
SDB12722.1 | nuoB | SAMN02982931_00951 | SAMN02982931_00939 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.999 |
SDB12722.1 | nuoD | SAMN02982931_00951 | SAMN02982931_00941 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.999 |
SDB12722.1 | nuoH | SAMN02982931_00951 | SAMN02982931_00946 | NADH dehydrogenase subunit M. | NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
SDB12722.1 | nuoN | SAMN02982931_00951 | SAMN02982931_00952 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. | 0.999 |
SDB30465.1 | SDB30476.1 | SAMN02982931_02311 | SAMN02982931_02312 | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase. | Heptosyltransferase-1. | 0.978 |
SDB30465.1 | SDB44762.1 | SAMN02982931_02311 | SAMN02982931_03420 | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase. | ADP-heptose:LPS heptosyltransferase. | 0.869 |
SDB30465.1 | gmhA | SAMN02982931_02311 | SAMN02982931_02310 | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase. | Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. | 0.999 |
SDB30465.1 | hldE | SAMN02982931_02311 | SAMN02982931_02309 | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase. | D-alpha,beta-D-heptose 7-phosphate 1-kinase; Catalyzes the ADP transfer from ATP to D-glycero-beta-D- manno-heptose 1-phosphate, yielding ADP-D-glycero-beta-D-manno-heptose. In the N-terminal section; belongs to the carbohydrate kinase PfkB family. | 0.969 |
SDB30476.1 | SDB12722.1 | SAMN02982931_02312 | SAMN02982931_00951 | Heptosyltransferase-1. | NADH dehydrogenase subunit M. | 0.922 |
SDB30476.1 | SDB30465.1 | SAMN02982931_02312 | SAMN02982931_02311 | Heptosyltransferase-1. | D-glycero-D-manno-heptose 1,7-bisphosphate phosphatase. | 0.978 |
SDB30476.1 | SDB44762.1 | SAMN02982931_02312 | SAMN02982931_03420 | Heptosyltransferase-1. | ADP-heptose:LPS heptosyltransferase. | 0.974 |
SDB30476.1 | gmhA | SAMN02982931_02312 | SAMN02982931_02310 | Heptosyltransferase-1. | Phosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate. | 0.966 |
SDB30476.1 | hldE | SAMN02982931_02312 | SAMN02982931_02309 | Heptosyltransferase-1. | D-alpha,beta-D-heptose 7-phosphate 1-kinase; Catalyzes the ADP transfer from ATP to D-glycero-beta-D- manno-heptose 1-phosphate, yielding ADP-D-glycero-beta-D-manno-heptose. In the N-terminal section; belongs to the carbohydrate kinase PfkB family. | 0.961 |
SDB30476.1 | nuoA | SAMN02982931_02312 | SAMN02982931_00938 | Heptosyltransferase-1. | NADH dehydrogenase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. | 0.898 |
SDB30476.1 | nuoB | SAMN02982931_02312 | SAMN02982931_00939 | Heptosyltransferase-1. | NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. | 0.898 |
SDB30476.1 | nuoD | SAMN02982931_02312 | SAMN02982931_00941 | Heptosyltransferase-1. | NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family. | 0.892 |
SDB30476.1 | nuoH | SAMN02982931_02312 | SAMN02982931_00946 | Heptosyltransferase-1. | NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.900 |