STRINGSTRING
VV1361 protein (Vibrio vulnificus) - STRING interaction network
"VV1361" - Peptidyl-prolyl cis-trans isomerase in Vibrio vulnificus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
VV1361Peptidyl-prolyl cis-trans isomerase; PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (164 aa)    
Predicted Functional Partners:
lpxH
UDP-2,3-diacylglucosamine hydrolase; Hydrolyzes the pyrophosphate bond of UDP-2,3- diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP by catalyzing the attack of water at the alpha-P atom. Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell (243 aa)
 
      0.841
cysS
annotation not available (509 aa)
   
        0.729
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity (634 aa)
 
 
  0.641
VVA1075
annotation not available (157 aa)
   
 
  0.563
VV1676
annotation not available (789 aa)
   
      0.534
VV2879
dITP/XTP pyrophosphatase; Pyrophosphatase that catalyzes the hydrolysis of nucleoside triphosphates to their monophosphate derivatives, with a high preference for the non-canonical purine nucleotides XTP (xanthosine triphosphate), dITP (deoxyinosine triphosphate) and ITP. Seems to function as a house-cleaning enzyme that removes non-canonical purine nucleotides from the nucleotide pool, thus preventing their incorporation into DNA/RNA and avoiding chromosomal lesions; Belongs to the HAM1 NTPase family (200 aa)
   
 
  0.526
VVA0501
annotation not available (644 aa)
     
 
  0.504
VVA1432
annotation not available (672 aa)
   
 
  0.492
fusA1
Elongation factor G 1; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (699 aa)
   
 
  0.492
fusA2
Elongation factor G 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (695 aa)
   
 
  0.492
Your Current Organism:
Vibrio vulnificus
NCBI taxonomy Id: 672
Other names: ATCC 27562, BCRC 12905, Beneckea vulnifica, CAIM 610, CCRC 12905, CCUG 13448, CCUG 16394, CIP 75.4, DSM 10143, IFO 15645, JCM 3725, LMG 13545, NBRC 15645, V. vulnificus, Vibrio vulnificus, strain 324
Server load: low (10%) [HD]