STRINGSTRING
folD protein (Vibrio vulnificus) - STRING interaction network
"folD" - Bifunctional protein FolD in Vibrio vulnificus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
folDBifunctional protein FolD; Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (285 aa)    
Predicted Functional Partners:
glyA
Serine hydroxymethyltransferase 1; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (416 aa)
 
 
  0.993
fhs
annotation not available (582 aa)
 
 
  0.992
VVA0696
annotation not available (377 aa)
   
 
  0.983
purH
annotation not available (530 aa)
 
  0.980
VV2849
annotation not available (199 aa)
 
 
  0.979
glyA2
Serine hydroxymethyltransferase 2; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (431 aa)
 
 
  0.978
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate (212 aa)
 
 
  0.969
purU
Formyltetrahydrofolate deformylase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4) (277 aa)
 
 
  0.966
fmt
Methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus (315 aa)
 
  0.959
metF
annotation not available (297 aa)
   
 
  0.956
Your Current Organism:
Vibrio vulnificus
NCBI taxonomy Id: 672
Other names: ATCC 27562, BCRC 12905, Beneckea vulnifica, CAIM 610, CCRC 12905, CCUG 13448, CCUG 16394, CIP 75.4, DSM 10143, IFO 15645, JCM 3725, LMG 13545, NBRC 15645, V. vulnificus, Vibrio vulnificus, strain 324
Server load: low (14%) [HD]