STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
trpCIndole-3-glycerol phosphate synthase; Belongs to the TrpC family. (227 aa)    
Predicted Functional Partners:
trpD
Anthranilate phosphoribosyltransferase; Catalyzes the transfer of the phosphoribosyl group of 5- phosphorylribose-1-pyrophosphate (PRPP) to anthranilate to yield N-(5'- phosphoribosyl)-anthranilate (PRA).
  
 0.999
trpE
Anthranilate synthase, component I; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concent [...]
 
 0.999
trpG
Anthranilate synthase, component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...]
  
 0.999
trpF
N-(5'-phosphoribosyl)anthranilate isomerase; Belongs to the TrpF family.
 
 
 0.999
trpB1
Tryptophan synthase, beta subunit; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
 
 0.999
trpA
Tryptophan synthase, alpha subunit; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family.
 
 
 0.999
trpB2
Tryptophan synthase beta subunit-related protein; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
 
 
 0.957
hisF
Imidazoleglycerol-phosphate synthase, cyclase subunit F; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisF subunit catalyzes the cyclization activity that produces IGP and AICAR from PRFAR using the ammonia provided by the HisH subunit.
  
  
 0.861
TK0261
Predicted chorismate mutase, N-truncation.
  
  
 0.859
hisA
1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino) methylideneamino] imidazole-4-carboxamide isomerase.
  
  
 0.851
Your Current Organism:
Thermococcus kodakarensis
NCBI taxonomy Id: 69014
Other names: Pyrococcus sp. (strain KOD1), Pyrococcus sp. KOD1, T. kodakarensis KOD1, Thermococcus kodakaraensis KOD1, Thermococcus kodakarensis KOD1, Thermococcus kodakarensis str. KOD1, Thermococcus kodakarensis strain KOD1
Server load: low (34%) [HD]