STRINGSTRING
dapB protein (Midichloria mitochondrii) - STRING interaction network
"dapB" - Dihydrodipicolinate reductase in Midichloria mitochondrii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dapBDihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy- tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate (254 aa)    
Predicted Functional Partners:
dapA
Dihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta- semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy- tetrahydrodipicolinate (HTPA) (294 aa)
 
 
  0.999
dapD
2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase (243 aa)
   
 
  0.998
lysC
Aspartokinase (398 aa)
 
   
  0.861
midi_00488
Aspartate-semialdehyde dehydrogenase (335 aa)
 
   
  0.819
midi_00489
Aspartate kinase (374 aa)
 
   
  0.808
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (385 aa)
   
   
  0.643
nadE
NAD+ synthetase (548 aa)
   
   
  0.610
metK
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme (376 aa)
         
  0.604
dapE
Succinyl-diaminopimelate desuccinylase; Catalyzes the hydrolysis of N-succinyl-L,L- diaminopimelic acid (SDAP), forming succinate and LL-2,6- diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls (381 aa)
     
 
  0.603
midi_00238
Putative ATPase involved in cell division (460 aa)
              0.589
Your Current Organism:
Midichloria mitochondrii
NCBI taxonomy Id: 696127
Other names: C. Midichloria, C. Midichloria mitochondrii, C. Midichloria mitochondrii IricVA, Candidatus Midichloria, Candidatus Midichloria mitochondrii, Candidatus Midichloria mitochondrii IricVA, Candidatus Midichloria mitochondrii str. IricVA, Candidatus Midichloria mitochondrii strain IricVA, Ixodes ricinus endosymbiont, Ixodes ricinus endosymbiont 1 (IricES1), Midichloria, Midichloria mitochondrii, Midichloria mitochondrii IricVA, endosymbiont of Ixodes ricinus
Server load: low (8%) [HD]