STRINGSTRING
ksgA protein (Methylobacter tundripaludum) - STRING interaction network
"ksgA" - S-adenosylmethionine-6-N', N'-adenosyl(rRNA) dimethyltransferase in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ksgAS-adenosylmethionine-6-N’, N’-adenosyl(rRNA) dimethyltransferase ; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3’-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits (282 aa)    
Predicted Functional Partners:
rpsD
30S ribosomal protein S4 ; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit (206 aa)
     
 
  0.960
truB
tRNA-uridine isomerase ; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (342 aa)
 
 
  0.959
pdxA
4-(phosphohydroxy)-L-threonine dehydrogenase ; Catalyzes the NAD(P)-dependent oxidation of 4- (phosphohydroxy)-L-threonine (HTP) into 2-amino-3-oxo-4- (phosphohydroxy)butyric acid which spontaneously decarboxylates to form 3-amino-2-oxopropyl phosphate (AHAP) (329 aa)
   
   
  0.951
Mettu_2829
30S ribosomal protein S1 ; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (553 aa)
   
 
  0.924
Mettu_3769
Ribosomal RNA small subunit methyltransferase B (435 aa)
 
   
  0.915
tsaD
tRNA threonylcarbamoyladenosine biosynthesis protein TsaD ; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction (334 aa)
 
   
  0.914
rpsB
30S ribosomal protein S2 (245 aa)
     
 
  0.913
Mettu_1869
Inosine-5’-monophosphate dehydrogenase (488 aa)
 
   
  0.913
rpsH
30S ribosomal protein S8 ; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit (131 aa)
 
 
  0.912
rpsG
30S ribosomal protein S7 ; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
     
 
  0.912
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (16%) [HD]