STRINGSTRING
bioD protein (Methylobacter tundripaludum) - STRING interaction network
"bioD" - Dethiobiotin synthase in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bioDDethiobiotin synthase ; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8-diaminopelargonic acid (DAPA) to form an ureido ring (219 aa)    
Predicted Functional Partners:
bioA
Diaminopelargonic acid synthase ; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor (450 aa)
 
  0.999
bioB
Biotin synthase ; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical- based mechanism (322 aa)
 
 
  0.999
bioC
Biotin synthesis protein BioC ; Converts the free carboxyl group of a malonyl-thioester to its methyl ester by transfer of a methyl group from S-adenosyl- L-methionine (SAM). It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway (257 aa)
 
 
  0.998
bioF
8-amino-7-ketopelargonate synthase ; Catalyzes the decarboxylative condensation of pimeloyl- [acyl-carrier protein] and L-alanine to produce 8-amino-7- oxononanoate (AON), [acyl-carrier protein], and carbon dioxide (389 aa)
 
 
  0.998
Mettu_0134
Carboxylesterase (287 aa)
 
   
  0.986
Mettu_4177
8-amino-7-oxononanoate synthase (407 aa)
 
 
  0.931
Mettu_3064
8-amino-7-oxononanoate synthase (414 aa)
 
 
  0.896
Mettu_3287
Beta-ketoacyl-acyl-carrier-protein synthase I (409 aa)
       
    0.813
Mettu_0825
3-oxoacyl-[acyl-carrier-protein] synthase 2 ; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP (414 aa)
       
    0.813
Mettu_0698
Beta-ketoacyl-acyl-carrier-protein synthase I (407 aa)
       
    0.813
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (12%) [HD]