STRINGSTRING
dksA protein (Methylobacter tundripaludum) - STRING interaction network
"dksA" - RNA polymerase-binding transcription factor DksA in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dksARNA polymerase-binding transcription factor DksA ; Transcription factor that acts by binding directly to the RNA polymerase (RNAP). Required for negative regulation of rRNA expression and positive regulation of several amino acid biosynthesis promoters. Also required for regulation of fis expression (144 aa)    
Predicted Functional Partners:
gluQ
Glutamyl-Q tRNA(Asp) synthetase ; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5- dihydroxy-2-cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon (301 aa)
         
  0.924
hslV
ATP-dependent protease subunit HslV ; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery (182 aa)
       
  0.896
hslU
Unfoldase HslU ; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis (439 aa)
       
  0.864
rpoC
Transcriptase subunit beta’ ; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1397 aa)
       
 
  0.840
greA
Transcript cleavage factor GreA ; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreA releases sequences of 2 to 3 nucleotides (158 aa)
     
 
  0.815
rpoH
RNA polymerase sigma-32 factor ; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is involved in regulation of expression of heat shock genes (285 aa)
   
   
  0.776
pcnB
Poly(A) polymerase I ; Adds poly(A) tail to the 3’ end of many RNAs, which usually targets these RNAs for decay. Plays a significant role in the global control of gene expression, through influencing the rate of transcript degradation, and in the general RNA quality control (467 aa)
 
     
  0.767
rpoS
Sigma-38 (342 aa)
     
   
  0.762
Mettu_0466
Aspartate transaminase (388 aa)
              0.733
greB
Transcript cleavage factor GreB ; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreB releases sequences of up to 9 nucleotides in length (166 aa)
     
 
  0.710
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (12%) [HD]