STRINGSTRING
clpB protein (Methylobacter tundripaludum) - STRING interaction network
"clpB" - Chaperone protein ClpB in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpBChaperone protein ClpB ; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE (858 aa)    
Predicted Functional Partners:
dnaK
Heat shock protein 70 ; Acts as a chaperone (644 aa)
   
 
  0.995
grpE
HSP-70 cofactor ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- depend [...] (203 aa)
   
 
  0.993
dnaJ
Chaperone protein DnaJ ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (376 aa)
   
  0.992
clpP
Endopeptidase Clp ; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (215 aa)
   
 
  0.979
clpS
ATP-dependent Clp protease adapter protein ClpS ; Involved in the modulation of the specificity of the ClpAP-mediated ATP-dependent protein degradation (107 aa)
   
 
  0.970
htpG
High temperature protein G ; Molecular chaperone. Has ATPase activity (642 aa)
   
 
  0.955
groS
Protein Cpn10 ; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter (95 aa)
   
 
  0.938
groL
Protein Cpn60 ; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (550 aa)
     
 
  0.936
Mettu_3601
Heat shock protein 70 (432 aa)
   
 
  0.920
Mettu_3235
DnaK-related protein (646 aa)
   
 
  0.920
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (15%) [HD]