STRINGSTRING
hflX protein (Methylobacter tundripaludum) - STRING interaction network
"hflX" - GTP-binding protein HflX in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hflXGTP-binding protein HflX ; GTPase that associates with the 50S ribosomal subunit and may have a role during protein synthesis or ribosome biogenesis (421 aa)    
Predicted Functional Partners:
Mettu_2978
Protein HflC ; HflC and HflK could regulate a protease (284 aa)
   
   
  0.945
Mettu_2979
HflK protein (399 aa)
   
   
  0.940
miaA
Isopentenyl-diphosphate-tRNA isopentenyltransferase ; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A) (317 aa)
 
   
  0.924
hfq
RNA-binding protein Hfq ; RNA chaperone that binds small regulatory RNA (sRNAs) and mRNAs to facilitate mRNA translational regulation in response to envelope stress, environmental stress and changes in metabolite concentrations. Also binds with high specificity to tRNAs (79 aa)
 
   
  0.880
rplA
50S ribosomal protein L1 ; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release (231 aa)
     
 
  0.857
rplE
50S ribosomal protein L5 ; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (179 aa)
     
 
  0.854
der
GTP-binding protein EngA ; GTPase that plays an essential role in the late steps of ribosome biogenesis (465 aa)
   
  0.850
rplB
50S ribosomal protein L2 ; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (275 aa)
     
 
  0.847
rplQ
50S ribosomal protein L17 (125 aa)
     
 
  0.843
rpmA
50S ribosomal protein L27 (85 aa)
     
      0.843
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (11%) [HD]