STRINGSTRING
Mettu_2990 protein (Methylobacter tundripaludum) - STRING interaction network
"Mettu_2990" - FAD:protein FMN transferase in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Mettu_2990FAD-protein FMN transferase ; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein (359 aa)    
Predicted Functional Partners:
nqrE
NQR-1 subunit E ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol (202 aa)
 
        0.862
nqrD
NQR-1 subunit D ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol (227 aa)
 
        0.847
Mettu_3407
Electron transport complex subunit A ; Part of a membrane complex involved in electron transport (193 aa)
 
          0.812
Mettu_2989
Hopanoid biosynthesis associated RND transporter like protein HpnN (883 aa)
              0.805
nqrB
NQR-1 subunit B ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol (400 aa)
 
        0.799
Mettu_3402
Electron transport complex subunit E ; Part of a membrane complex involved in electron transport (232 aa)
 
        0.792
Mettu_3404
Electron transport complex subunit D ; Part of a membrane complex involved in electron transport (357 aa)
 
        0.762
nqrF
NQR-1 subunit F ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway (406 aa)
 
        0.742
nqrC
NQR-1 subunit C ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol (311 aa)
 
        0.652
nqrA
NQR-1 subunit A ; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol (449 aa)
 
        0.643
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: medium (47%) [HD]