STRINGSTRING
Mettu_3185 protein (Methylobacter tundripaludum) - STRING interaction network
"Mettu_3185" - Methyltransferase type 11 in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Mettu_3185Methyltransferase type 11 (239 aa)    
Predicted Functional Partners:
rnhA
Ribonuclease H ; Endonuclease that specifically degrades the RNA of RNA- DNA hybrids (151 aa)
     
 
  0.958
nuoC
NDH-1 subunit C/D ; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (592 aa)
     
  0.887
gcvP
Glycine dehydrogenase (aminomethyl-transferring) ; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (963 aa)
     
 
    0.882
Mettu_3184
Lytic transglycosylase catalytic (537 aa)
 
 
      0.809
bioB
Biotin synthase ; Catalyzes the conversion of dethiobiotin (DTB) to biotin by the insertion of a sulfur atom into dethiobiotin via a radical- based mechanism (322 aa)
   
 
  0.772
Mettu_4177
8-amino-7-oxononanoate synthase (407 aa)
   
 
  0.765
Mettu_3064
8-amino-7-oxononanoate synthase (414 aa)
   
 
  0.765
bioF
8-amino-7-ketopelargonate synthase ; Catalyzes the decarboxylative condensation of pimeloyl- [acyl-carrier protein] and L-alanine to produce 8-amino-7- oxononanoate (AON), [acyl-carrier protein], and carbon dioxide (389 aa)
   
 
  0.765
bioD
Dethiobiotin synthase ; Catalyzes a mechanistically unusual reaction, the ATP- dependent insertion of CO2 between the N7 and N8 nitrogen atoms of 7,8-diaminopelargonic acid (DAPA) to form an ureido ring (219 aa)
   
 
  0.749
bioA
Diaminopelargonic acid synthase ; Catalyzes the transfer of the alpha-amino group from S- adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form 7,8-diaminopelargonic acid (DAPA). It is the only animotransferase known to utilize SAM as an amino donor (450 aa)
   
 
  0.746
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (12%) [HD]