STRINGSTRING
Mettu_3338 protein (Methylobacter tundripaludum) - STRING interaction network
"Mettu_3338" - Exodeoxyribonuclease III Xth in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Mettu_3338Exodeoxyribonuclease III Xth (254 aa)    
Predicted Functional Partners:
nth
DNA-(apurinic or apyrimidinic site) lyase ; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N- glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3’ to the AP site by a beta-elimination, leaving a 3’-terminal unsaturated sugar and a product with a terminal 5’-phosphate (241 aa)
 
 
  0.989
Mettu_1953
DNA polymerase III subunit beta ; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (366 aa)
     
  0.945
Mettu_1918
A/G-specific adenine glycosylase (349 aa)
     
  0.925
Mettu_2187
DNA polymerase I (930 aa)
     
  0.908
Mettu_3337
Uracil-DNA glycosylase superfamily (210 aa)
         
  0.864
Mettu_3948
D,D-heptose 1,7-bisphosphate phosphatase (183 aa)
   
 
  0.811
recA
Recombinase A ; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (345 aa)
     
 
  0.667
Mettu_0829
DNA polymerase III, delta prime subunit (352 aa)
     
    0.615
fpg
DNA-(apurinic or apyrimidinic site) lyase MutM ; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3’- and 5’-phosphates (271 aa)
     
   
  0.610
murB
UDP-N-acetylmuramate dehydrogenase ; Cell wall formation (304 aa)
 
 
      0.603
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (12%) [HD]