STRINGSTRING
Mettu_3855 protein (Methylobacter tundripaludum) - STRING interaction network
"Mettu_3855" - ATP-binding cassette protein, ChvD family in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Mettu_3855ATP-binding cassette protein, ChvD family (555 aa)    
Predicted Functional Partners:
rplA
50S ribosomal protein L1 ; Binds directly to 23S rRNA. The L1 stalk is quite mobile in the ribosome, and is involved in E site tRNA release (231 aa)
     
      0.922
rplE
50S ribosomal protein L5 ; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs (179 aa)
     
      0.919
rpsG
30S ribosomal protein S7 ; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
   
      0.868
rpmG
50S ribosomal protein L33 (51 aa)
   
 
      0.840
rlmL
Ribosomal RNA large subunit methyltransferase K/L ; Specifically methylates the guanine in position 2445 (m2G2445) and the guanine in position 2069 (m7G2069) of 23S rRNA (774 aa)
   
   
  0.629
guaA
Glutamine amidotransferase ; Catalyzes the synthesis of GMP from XMP (528 aa)
   
        0.605
metG
Methionyl-tRNA synthetase ; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (672 aa)
   
        0.585
pheT
Phenylalanyl-tRNA synthetase beta subunit (791 aa)
   
        0.584
glyA
Serine hydroxymethyltransferase ; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (417 aa)
   
      0.576
Mettu_2829
30S ribosomal protein S1 ; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (553 aa)
   
        0.574
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (7%) [HD]