STRINGSTRING
mutL protein (Methylobacter tundripaludum) - STRING interaction network
"mutL" - DNA mismatch repair protein MutL in Methylobacter tundripaludum
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mutLDNA mismatch repair protein MutL ; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a "molecular matchmaker", a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex (614 aa)    
Predicted Functional Partners:
mutS
DNA mismatch repair protein MutS ; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity (856 aa)
 
  0.999
Mettu_3955
DNA mismatch repair protein MutS domain protein (532 aa)
 
  0.994
recA
Recombinase A ; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (345 aa)
   
  0.978
Mettu_2187
DNA polymerase I (930 aa)
   
  0.971
Mettu_2642
DNA helicase (725 aa)
   
 
  0.957
rep
ATP-dependent DNA helicase Rep ; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3’ to 5’ direction (667 aa)
   
 
  0.957
uvrC
Excinuclease ABC subunit C ; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (613 aa)
   
   
  0.957
miaA
Isopentenyl-diphosphate-tRNA isopentenyltransferase ; Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 in tRNAs that read codons beginning with uridine, leading to the formation of N6-(dimethylallyl)adenosine (i(6)A) (317 aa)
 
     
  0.938
Mettu_3563
DNA mismatch endonuclease Vsr (142 aa)
     
 
  0.914
Mettu_3089
DNA polymerase III, subunits gamma and tau (540 aa)
   
 
  0.910
Your Current Organism:
Methylobacter tundripaludum
NCBI taxonomy Id: 697282
Other names: M. tundripaludum, M. tundripaludum SV96, Methylobacter, Methylobacter sp. SV96, Methylobacter tundripaludum, Methylobacter tundripaludum DSM 17260, Methylobacter tundripaludum SV96, Methylobacter tundripaludum Wartiainen et al. 2006, Methylobacter tundripaludum str. SV96, Methylobacter tundripaludum strain SV96
Server load: low (10%) [HD]