STRINGSTRING
recO protein (Chlamydia trachomatis) - STRING interaction network
"recO" - DNA repair protein RecO in Chlamydia trachomatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recODNA repair protein RecO; Involved in DNA repair and RecF pathway recombination (248 aa)    
Predicted Functional Partners:
O172_02570
annotation not available (178 aa)
              0.869
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (868 aa)
   
   
  0.786
recF
DNA replication and repair protein RecF; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP (365 aa)
   
 
  0.701
recR
Recombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (200 aa)
   
 
  0.690
dnaN
Beta sliding clamp; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3’-5’ exonuclease proofreading activity. The beta chain is required for initiation of replication as [...] (366 aa)
   
   
  0.681
dnaK
annotation not available (660 aa)
   
 
  0.646
recJ
annotation not available (584 aa)
   
   
  0.638
mfd
Transcription-repair-coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1079 aa)
   
   
  0.627
uvrC
UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (598 aa)
         
  0.627
acpP
Acyl carrier protein; Carrier of the growing fatty acid chain in fatty acid biosynthesis (77 aa)
         
  0.627
Your Current Organism:
Chlamydia trachomatis
NCBI taxonomy Id: 813
Other names: ATCC VR-571B, C. trachomatis, Chlamydia trachomatis, Chlamydozoon trachomatis, DSM 19440, Rickettsia trachomae, Rickettsia trachomatis, strain A/Har-13
Server load: low (13%) [HD]