STRINGSTRING
recB protein (Chlamydia trachomatis) - STRING interaction network
"recB" - annotation not available in Chlamydia trachomatis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recBannotation not available (1026 aa)    
Predicted Functional Partners:
O172_03510
annotation not available (1006 aa)
 
 
  0.998
O172_03580
annotation not available (496 aa)
 
 
  0.835
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (868 aa)
   
   
  0.778
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (352 aa)
         
  0.751
recD2
ATP-dependent RecD-like DNA helicase; DNA-dependent ATPase and ATP-dependent 5’-3’ DNA helicase. Has no activity on blunt DNA or DNA with 3’-overhangs, requires at least 10 bases of 5’-ssDNA for helicase activity (746 aa)
 
 
  0.694
lplT
annotation not available (559 aa)
 
        0.685
O172_02615
annotation not available (170 aa)
         
  0.683
uvrC
UvrABC system protein C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5’ and 3’ sides of the lesion. The N-terminal half is responsible for the 3’ incision and the C-terminal half is responsible for the 5’ incision (598 aa)
         
  0.627
dnaE
annotation not available (1237 aa)
         
  0.607
uvrB
UvrABC system protein B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate and [...] (668 aa)
         
  0.589
Your Current Organism:
Chlamydia trachomatis
NCBI taxonomy Id: 813
Other names: ATCC VR-571B, C. trachomatis, Chlamydia trachomatis, Chlamydozoon trachomatis, DSM 19440, Rickettsia trachomae, Rickettsia trachomatis, strain A/Har-13
Server load: low (11%) [HD]