STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nuoJProbable NADH dehydrogenase I (chain J) NuoJ (NADH-ubiquinone oxidoreductase chain J); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (262 aa)    
Predicted Functional Partners:
Rv3143
Rv3143, (MTCY03A2.15c), len: 133 aa. Probable response regulator, similar to other sensory transduction regulatory proteins e.g. Q9X810|SC6G10.25 from Streptomyces coelicolor (133 aa), FASTA scores: opt: 474, E(): 2.8e-24,(54.15% identity in 120 aa overlap); Q9KZ82|SCE25.04c from Streptomyces coelicolor (225 aa), FASTA scores: opt: 144,E(): 0.016, (32.3% identity in 127 aa overlap); Q9RZT4|DRB0029 from Deinococcus radiodurans (416 aa), FASTA scores: opt: 145, E(): 0.024, (30.65% identity in 124 aa overlap). Similar to other regulatory components of sensory transduction systems.
 
   0.999
nuoA
Probable NADH dehydrogenase I (chain A) NuoA (NADH-ubiquinone oxidoreductase chain A); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family.
 
 
 0.999
nuoB
Probable NADH dehydrogenase I (chain B) NuoB (NADH-ubiquinone oxidoreductase chain B); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
 
 
 0.999
nuoC
Probable NADH dehydrogenase I (chain C) NuoC (NADH-ubiquinone oxidoreductase chain C); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
 
 
 0.999
nuoD
Probable NADH dehydrogenase I (chain D) NuoD (NADH-ubiquinone oxidoreductase chain D); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
 
 
 0.999
nuoE
Probable NADH dehydrogenase I (chain E) NuoE (NADH-ubiquinone oxidoreductase chain E); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity).
 
 
 0.999
nuoF
Probable NADH dehydrogenase I (chain F) NuoF (NADH-ubiquinone oxidoreductase chain F); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I 51 kDa subunit family.
 
 
 0.999
nuoG
Probable NADH dehydrogenase I (chain G) NuoG (NADH-ubiquinone oxidoreductase chain G); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity).
 
 
 0.999
nuoH
Probable NADH dehydrogenase I (chain H) NuoH (NADH-ubiquinone oxidoreductase chain H); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
 
 
 0.999
nuoI
Probable NADH dehydrogenase I (chain I) NuoI (NADH-ubiquinone oxidoreductase chain I); NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
 
 
 0.999
Your Current Organism:
Mycobacterium tuberculosis H37Rv
NCBI taxonomy Id: 83332
Other names: M. tuberculosis H37Rv, Mycobacterium sp. H37Rv, Mycobacterium tuberculosis str. H37Rv, Mycobacterium tuberculosis strain H37Rv
Server load: low (38%) [HD]