STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SYNW0671Putative dihydrolipoamide acetyltransferase component (E2) of pyruvate dehydrogenase complex. (441 aa)    
Predicted Functional Partners:
pdhB
Pyruvate dehydrogenase E1 beta subunit; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2.
 0.999
pdhA
Pyruvate dehydrogenase E1 alpha subunit; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2).
 
 0.999
lpdA
Putative dihydrolipoamide dehydrogenase.
 0.999
gshR
Probable glutathione reductase (NADPH).
 0.987
gltA
Citrate synthase; Belongs to the citrate synthase family.
  
 0.981
kprS
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
   
 0.941
acs
Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family.
  
 
 0.934
accC,
acetyl-CoA carboxylase, biotin carboxylase subunit; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 0.930
accB
Biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 
 0.924
accD
acetyl-CoA carboxylase, beta subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family.
     
 0.916
Your Current Organism:
Synechococcus sp. WH 8102
NCBI taxonomy Id: 84588
Other names: S. sp. WH 8102, Synechococcus sp. WH8102
Server load: medium (54%) [HD]