STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
petCCytochrome b6/f complex subunit (Rieske iron-sulfur protein); Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. Belongs to the Rieske iron-sulfur protein family. (178 aa)    
Predicted Functional Partners:
petB
Apocytochrome b6; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.
 
 0.999
petA
Apocytochrome f; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.
   
 0.998
petD
Cytochrome b6-f complex subunit 4 (17 kd polypeptide); Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.
 
 
 0.995
ndhH
NADH dehydrogenase I chain 7 (or D); NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
   
 0.990
petG
Cytochrome b6/f complex subunit 5; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions. PetG is required for either the stability or assembly of the cytochrome b6-f complex.
    
 0.989
ndhJ
NADH dehydrogenase I chain J; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
   
 0.985
petN
Cytochrome b6-f complex subunit VIII; Component of the cytochrome b6-f complex, which mediates electron transfer between photosystem II (PSII) and photosystem I (PSI), cyclic electron flow around PSI, and state transitions.
    
 0.981
ndhK,
NADH dehydrogenase I chain B or NdhK; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family.
   
 0.969
SYNW1083
Possible Zn-dependent peptidase; Belongs to the peptidase M16 family.
  
 0.968
SYNW1082
Possible Zn-dependent peptidase.
   
 0.963
Your Current Organism:
Synechococcus sp. WH 8102
NCBI taxonomy Id: 84588
Other names: S. sp. WH 8102, Synechococcus sp. WH8102
Server load: low (30%) [HD]