STRINGSTRING
topA protein (Ewingella americana) - STRING interaction network
"topA" - DNA topoisomerase 1 in Ewingella americana
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
topADNA topoisomerase 1; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (865 aa)    
Predicted Functional Partners:
GEAM_3317
Zn-finger domain-containing protein; Protein involved in DNA topoisomerase activity, DNA binding and DNA topological change (116 aa)
       
  0.921
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (329 aa)
     
 
  0.789
recA
Protein RecA; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (354 aa)
   
  0.786
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (804 aa)
   
 
  0.737
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (934 aa)
   
  0.721
GEAM_1950
Putative protease; Protein involved in serine-type endopeptidase activity, peptidase activity and proteolysis (348 aa)
          0.714
nfuA
Fe/S biogenesis protein NfuA; Involved in iron-sulfur cluster biogenesis. Binds a 4Fe- 4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins (191 aa)
   
        0.711
rapA
RNA polymerase-associated protein RapA; Transcription regulator that activates transcription by stimulating RNA polymerase (RNAP) recycling in case of stress conditions such as supercoiled DNA or high salt concentrations. Probably acts by releasing the RNAP, when it is trapped or immobilized on tightly supercoiled DNA. Does not activate transcription on linear DNA. Probably not involved in DNA repair (965 aa)
 
 
  0.679
recQ
ATP-dependent DNA helicase; Protein involved in nucleic acid binding, ATP binding, helicase activity, ATP-dependent helicase activity, ATP-dependent 3’-5’ DNA helicase activity, ATP-dependent DNA helicase activity, nucleotide binding, catalytic activity, DNA recombination, DNA repair, DNA replication, SOS response and cellular metabolic process (610 aa)
     
  0.678
pyrH
Uridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP (243 aa)
 
   
  0.635
Your Current Organism:
Ewingella americana
NCBI taxonomy Id: 910964
Other names: E. americana ATCC 33852, Ewingella americana, Ewingella americana ATCC 33852, Ewingella americana ATCC33852, Ewingella americana str. ATCC 33852, Ewingella americana strain ATCC 33852
Server load: low (9%) [HD]