STRINGSTRING
rnpA protein (Shewanella sp. ANA3) - STRING interaction network
"rnpA" - Ribonuclease P protein component in Shewanella sp. ANA3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rnpARibonuclease P protein component; RNaseP catalyzes the removal of the 5’-leader sequence from pre-tRNA to produce the mature 5’-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5’-leader sequence and broadening the substrate specificity of the ribozyme (118 aa)    
Predicted Functional Partners:
yidC
Membrane protein insertase YidC; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins (541 aa)
 
   
  0.984
ABK46252.1
Putative membrane protein insertion efficiency factor; Could be involved in insertion of integral membrane proteins into the membrane (84 aa)
   
   
  0.968
rph
Ribonuclease PH; Phosphorolytic exoribonuclease that removes nucleotide residues following the -CCA terminus of tRNA and adds nucleotides to the ends of RNA molecules by using nucleoside diphosphates as substrates (237 aa)
     
 
  0.927
rnt
Ribonuclease T; Trims short 3’ overhangs of a variety of RNA species, leaving a one or two nucleotide 3’ overhang. Responsible for the end-turnover of tRNA- specifically removes the terminal AMP residue from uncharged tRNA (tRNA-C-C-A). Also appears to be involved in tRNA biosynthesis (222 aa)
   
 
    0.920
rne
Ribonuclease E; Endoribonuclease that plays a central role in RNA processing and decay. Required for the maturation of 5S and 16S rRNAs and the majority of tRNAs. Also involved in the degradation of most mRNAs; Belongs to the RNase E/G family. RNase E subfamily (1098 aa)
     
 
  0.917
rnd
Ribonuclease D; Exonuclease involved in the 3’ processing of various precursor tRNAs. Initiates hydrolysis at the 3’-terminus of an RNA molecule and releases 5’-mononucleotides; Belongs to the RNase D family (388 aa)
       
    0.901
mnmE
tRNA modification GTPase MnmE; Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA- cmnm(5)s(2)U34; Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin- like GTPase superfamily. TrmE GTPase family (453 aa)
   
   
  0.899
gidA
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family (629 aa)
   
   
  0.806
rpmA
PFAM- ribosomal protein L27; KEGG- son-SO3651 ribosomal protein L27; Belongs to the bacterial ribosomal protein bL27 family (84 aa)
   
   
  0.754
ABK46255.1
Beta sliding clamp; Confers DNA tethering and processivity to DNA polymerases and other proteins. Acts as a clamp, forming a ring around DNA (a reaction catalyzed by the clamp-loading complex) which diffuses in an ATP-independent manner freely and bidirectionally along dsDNA. Initially characterized for its ability to contact the catalytic subunit of DNA polymerase III (Pol III), a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria; Pol III exhibits 3’-5’ exonuclease proofreading activity. The beta chain is required for initiation of replication as [...] (366 aa)
 
   
  0.752
Your Current Organism:
Shewanella sp. ANA3
NCBI taxonomy Id: 94122
Other names: S. sp. ANA-3, Shewanella sp. ANA-3, Shewanella sp. ANA3, Shewanella sp. arsenana, Shewanella trabarsenatis
Server load: low (6%) [HD]