STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
LOC735962ATP5EP2 isoform 1. (51 aa)    
Predicted Functional Partners:
ATP5ME
ATP synthase membrane subunit e.
   
 0.988
ATP5MG
ATP synthase subunit; Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and F0 - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proto [...]
   
 0.986
ATP5F1D
ATP synthase, H+ transporting, mitochondrial F1 complex, delta subunit.
   
 0.978
ATP5F1A
ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...]
   
 0.973
ATP5F1B
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane.
   
 0.970
ATP5MD
Up-regulated during skeletal muscle growth 5 homolog.
   
 0.966
ENSPTRP00000087640
annotation not available
   
 0.959
ATP5F1C
ATP synthase subunit gamma.
   
 0.947
ATP5MC3
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C3 (Subunit 9); Belongs to the ATPase C chain family.
   
 0.932
ATP5PD
ATP synthase subunit d, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the cent [...]
   
 0.931
Your Current Organism:
Pan troglodytes
NCBI taxonomy Id: 9598
Other names: P. troglodytes, chimpanzee
Server load: medium (80%) [HD]