STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PNLDC1Poly(A)-specific ribonuclease PNLDC1; 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. May act as a regulator of multipotency in embryonic stem cells (By similarity). (531 aa)    
Predicted Functional Partners:
PARN
Poly(A)-specific ribonuclease PARN; 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsens [...]
  
  
0.922
TENT2
Poly(A) RNA polymerase GLD2; Cytoplasmic poly(A) RNA polymerase that adds successive AMP monomers to the 3'-end of specific RNAs, forming a poly(A) tail. In contrast to the canonical nuclear poly(A) RNA polymerase, it only adds poly(A) to selected cytoplasmic mRNAs. Does not play a role in replication-dependent histone mRNA degradation. Adds a single nucleotide to the 3' end of specific miRNAs, monoadenylation stabilizes and prolongs the activity of some but not all miRNAs ; Belongs to the DNA polymerase type-B-like family. GLD2 subfamily.
   
  
 0.885
SYMPK
Symplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity.
    
 
 0.779
TDRKH
Tudor and KH domain-containing protein; Participates in the primary piRNA biogenesis pathway and is required during spermatogenesis to repress transposable elements and prevent their mobilization, which is essential for the germline integrity. The piRNA metabolic process mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and govern the methylation and subsequent repression of transposons. Required for the final steps of primary piRNA biogenesis by participating in the processing of 31-37 nt intermediates into mature [...]
      
 0.736
PLD6
Mitochondrial cardiolipin hydrolase; Endonuclease that plays a critical role in PIWI-interacting RNA (piRNA) biogenesis during spermatogenesis. piRNAs provide essential protection against the activity of mobile genetic elements (By similarity). piRNA-mediated transposon silencing is thus critical for maintaining genome stability, in particular in germline cells when transposons are mobilized as a consequence of wide-spread genomic demethylation (By similarity). Has been proposed to act as a cardiolipin hydrolase to generate phosphatidic acid at mitochondrial surface (By similarity). Al [...]
      
 0.731
NGDN
Neuroguidin; Involved in the translational repression of cytoplasmic polyadenylation element (CPE)-containing mRNAs; Belongs to the SAS10 family.
      
 0.705
HENMT1
Small RNA 2'-O-methyltransferase; Methyltransferase that adds a 2'-O-methyl group at the 3'-end of piRNAs, a class of 24 to 30 nucleotide RNAs that are generated by a Dicer-independent mechanism and are primarily derived from transposons and other repeated sequence elements. This probably protects the 3'-end of piRNAs from uridylation activity and subsequent degradation. Stabilization of piRNAs is essential for gametogenesis.
      
 0.686
PAPOLG
Poly(A) polymerase gamma; Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA.
      
 0.610
PAPOLA
Poly(A) polymerase alpha; Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C- terminus.
      
 0.608
PAPOLB
poly(A) polymerase beta.
      
 0.608
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (46%) [HD]