STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ALDH3A1Aldehyde dehydrogenase, dimeric NADP-preferring; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde (Probable). They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (Probable). Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Preferentially oxidizes aromatic aldehyde substrates. Comprises about 50 percent of corneal epithelial soluble proteins (By similarity). May play a role in preventing corneal damage caused by ultraviolet light (By similarity). (453 aa)    
Predicted Functional Partners:
MAOB
Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine; Belongs to the flavin monoamine oxidase family.
  
 
 0.952
MAOA
Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
  
 
 0.951
COMT
Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Belongs to the class I-like SAM-binding methyltransferase superfamily. Cation-dependent O-methyltransferase family.
   
 
 0.946
ACSS2
Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity (By similarity). Belongs to the ATP-dependent AMP-binding enzyme family.
  
 0.944
ABAT
4-aminobutyrate aminotransferase, mitochondrial; Catalyzes the conversion of gamma-aminobutyrate and L-beta- aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family.
  
 0.942
AKR1A1
Aldo-keto reductase family 1 member A1; Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde. Functions as a detoxifiying enzyme by reducing a range of toxic aldehydes. Reduces methylglyoxal and 3-deoxyglucosone, which are present at elevated levels under hyperglycemic conditions [...]
   
 0.941
ACSS1
Acetyl-coenzyme A synthetase 2-like, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity (By similarity). Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions (By similarity). Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient (By similarity).
  
 0.940
CYP2E1
Cytochrome P450 2E1; A cytochrome P450 monooxygenase involved in the metabolism of fatty acids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids. May be involved in the oxidative metabolism of xenobiotics (Probable).
   
 0.939
LRTOMT
Transmembrane O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones (By similarity). Required for auditory function. Component of the cochlear hair cell's mechanotransduction (MET) machinery. Involved in the assembly of the asymmetric tip-link MET complex. Required for transportation of TMC1 and TMC2 proteins into the mechanically sensitive stereocilia of the hair cells. The function in MET is independent of the enzymatic activity (By similarity). Belongs to the class I-like SAM-binding methyltransferase [...]
   
 
 0.931
AOC2
Retina-specific copper amine oxidase; Has a monoamine oxidase activity with substrate specificity for 2-phenylethylamine and tryptamine. May play a role in adipogenesis. May be a critical modulator of signal transmission in retina.
   
 0.930
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (30%) [HD]