STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DHRS3Short-chain dehydrogenase/reductase 3; Catalyzes the reduction of all-trans-retinal to all-trans- retinol in the presence of NADPH. (302 aa)    
Predicted Functional Partners:
CYP26A1
Cytochrome P450 26A1; A cytochrome P450 monooxygenase involved in the metabolism of all-trans retinoic acid (atRA), a signaling molecule that binds to retinoic acid receptors and regulates gene transcription. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH- ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon hydrogen bonds of atRA primarily at C-4 and C-18. Has no activity toward 9-cis and 13-cis retinoic acid st [...]
   
 
 0.972
ALDH1A3
Aldehyde dehydrogenase family 1 member A3; NAD-dependent aldehyde dehydrogenase that catalyzes the formation of retinoic acid. Has high activity with all-trans retinal, and has much lower in vitro activity with acetaldehyde. Required for the biosynthesis of normal levels of retinoic acid in the embryonic ocular and nasal regions; retinoic acid is required for normal embryonic development of the eye and the nasal region (By similarity).
  
 0.961
ALDH1A2
Retinal dehydrogenase 2; Converts retinaldehyde to retinoic acid. Recognizes as substrates free retinal and cellular retinol-binding protein-bound retinal. Can metabolize octanal and decanal, but has only very low activity with benzaldehyde, acetaldehyde and propanal. Displays complete lack of activity with citral (By similarity). Belongs to the aldehyde dehydrogenase family.
  
 0.956
ALDH1A1
Retinal dehydrogenase 1; Can convert/oxidize retinaldehyde to retinoic acid. Binds free retinal and cellular retinol-binding protein-bound retinal (By similarity). May have a broader specificity and oxidize other aldehydes in vivo.
  
 0.951
DHRS9
Dehydrogenase/reductase SDR family member 9; 3-alpha-hydroxysteroid dehydrogenase that converts 3-alpha- tetrahydroprogesterone (allopregnanolone) to dihydroxyprogesterone and 3-alpha-androstanediol to dihydroxyprogesterone. Plays also a role in the biosynthesis of retinoic acid from retinaldehyde. Can utilize both NADH and NADPH. Belongs to the short-chain dehydrogenases/reductases (SDR) family.
   
 
 0.951
LRAT
Lecithin retinol acyltransferase; Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters. Retinyl esters are storage forms of vitamin A (Probable). LRAT plays a critical role in vision (Probable). It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis- retinaldehyde which is the chromophore for rhodopsin and t [...]
   
 
 0.950
BCO1
Beta,beta-carotene 15,15'-dioxygenase; Symmetrically cleaves beta-carotene into two molecules of retinal using a dioxygenase mechanism; Belongs to the carotenoid oxygenase family.
   
 
 0.938
RETSAT
All-trans-retinol 13,14-reductase; Catalyzes the saturation of all-trans-retinol to all-trans- 13,14-dihydroretinol. Does not exhibit any activity toward all-trans- retinoic acid, nor 9-cis, 11-cis or 13-cis-retinol isomers. May play a role in the metabolism of vitamin A. Independently of retinol conversion, may regulate liver metabolism upstream of MLXIPL/ChREBP. May play a role in adipocyte differentiation. Belongs to the carotenoid/retinoid oxidoreductase family. CrtISO subfamily.
  
 
 0.936
DHRS4
Dehydrogenase/reductase SDR family member 4; Reduces all-trans-retinal and 9-cis retinal. Can also catalyze the oxidation of all-trans-retinol with NADP as co-factor, but with much lower efficiency. Reduces alkyl phenyl ketones and alpha- dicarbonyl compounds with aromatic rings, such as pyrimidine-4- aldehyde, 3-benzoylpyridine, 4-benzoylpyridine, menadione and 4- hexanoylpyridine. Has no activity towards aliphatic aldehydes and ketones (By similarity); Belongs to the short-chain dehydrogenases/reductases (SDR) family.
  
 
0.934
CYP27C1
Cytochrome P450 27C1; Catalyzes the conversion of all-trans retinol (also called vitamin A1, the precursor of 11-cis retinal) to 3,4-didehydroretinol (also called vitamin A2, the precursor of 11-cis 3,4-didehydroretinal). Also acts on all-trans retinal and all-trans retinoic acid. Belongs to the cytochrome P450 family.
   
 
 0.924
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (24%) [HD]