STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GNG12Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction (72 aa)    
Predicted Functional Partners:
GNB3
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction
   
 0.999
GNB4
Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction
   
 0.999
GNB2
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction
   
 0.999
GNB1
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction
   
 0.999
GNB5
Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...]
   
 0.967
GNA13
Guanine nucleotide-binding protein subunit alpha-13; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Activates effector molecule RhoA by binding and activating RhoGEFs (ARHGEF1/p115RhoGEF, ARHGEF11/PDZ-RhoGEF and ARHGEF12/LARG). GNA13-dependent Rho signaling subsequently regulates transcription factor AP-1 (activating protein-1) (By similarity). Promotes tumor cell invasion and metastasis by activating RhoA/ROCK signaling pathway. Inhibits CDH1-mediated cell adhesion in process independent from Rho a [...]
   
 0.964
GNG13
Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein- effector interaction
     
 0.962
GNA11
Guanine nucleotide-binding protein subunit alpha-11; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Acts as an activator of phospholipase C; G protein subunits alpha, group q
   
 0.961
GNA12
Guanine nucleotide-binding protein subunit alpha-12; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Activates effector molecule RhoA by binding and activating RhoGEFs (ARHGEF12/LARG). GNA12-dependent Rho signaling subsequently regulates transcription factor AP-1 (activating protein-1) (By similarity). GNA12-dependent Rho signaling also regulates protein phosphatese 2A activation causing dephosphorylation of its target proteins. Promotes tumor cell invasion and metastasis by activating RhoA/ROCK sign [...]
   
 0.959
GNAO1
Guanine nucleotide-binding protein G(o) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated by RGS14; Belongs to the G-alpha family. G(i/o/t/z) subfamily
    
 0.958
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (11%) [HD]