STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MOGAT22-acylglycerol O-acyltransferase 2; Catalyzes the formation of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. Has a preference toward monoacylglycerols containing unsaturated fatty acids in an order of C18:3 > C18:2 > C18:1 > C18:0. Plays a central role in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes. May play a role in diet-induced obesity. (334 aa)    
Predicted Functional Partners:
DGAT1
Diacylglycerol O-acyltransferase 1; Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders. Belongs to the membrane-bound acyltransf [...]
    
 0.993
PLPP4
Phospholipid phosphatase 4; Magnesium-independent phospholipid phosphatase with broad substrate specificity. Preferentially catalyzes the conversion of diacylglycerol pyrophosphate into phosphatidate but can also act on phosphatidate and lysophosphatidate. Phospholipid phosphatases are involved in both the synthesis of lipids and the degradation or generation of lipid-signaling molecules like diacylglycerol.
     
 0.926
PLPP5
Phospholipid phosphatase 5; Magnesium-independent phospholipid phosphatase with broad substrate specificity. Preferentially catalyzes the conversion of diacylglycerol pyrophosphate into phosphatidate but can also act on phosphatidate and lysophosphatidate. Phospholipid phosphatases are involved in both the synthesis of lipids and the generation or degradation of lipid-signaling molecules.
     
 0.926
MGLL
Monoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2- arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain. Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth. Belongs to the AB hydrolase superfamily. Monoacylglycerol lipase family.
    
 0.925
LPL
Lipoprotein lipase; Key enzyme in triglyceride metabolism. Catalyzes the hydrolysis of triglycerides from circulating chylomicrons and very low density lipoproteins (VLDL), and thereby plays an important role in lipid clearance from the blood stream, lipid utilization and storage. Mediates margination of triglyceride-rich lipoprotein particles in capillaries. Recruited to its site of action on the luminal surface of vascular endothelium by binding to GPIHBP1 and cell surface heparan sulfate proteoglycans.
   
 
 0.914
MOGAT3
2-acylglycerol O-acyltransferase 3; Catalyzes the formation of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. Also able to catalyze the terminal step in triacylglycerol synthesis by using diacylglycerol and fatty acyl-CoA as substrates. Has a preference toward palmitoyl-CoA and oleoyl-CoA. May be involved in absorption of dietary fat in the small intestine by catalyzing the resynthesis of triacylglycerol in enterocytes.
  
 
0.913
DGAT2
Diacylglycerol O-acyltransferase 2; Essential acyltransferase that catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. Required for synthesis and storage of intracellular triglycerides. Probably plays a central role in cytosolic lipid accumulation. In liver, is primarily responsible for incorporating endogenously synthesized fatty acids into triglycerides (By similarity). Functions also as an acyl-CoA retinol acyltransferase (ARAT).
  
0.913
MOGAT1
2-acylglycerol O-acyltransferase 1; Catalyzes the formation of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. Probably not involved in absorption of dietary fat in the small intestine (By similarity). Belongs to the diacylglycerol acyltransferase family.
  
 
0.910
AGK
Acylglycerol kinase, mitochondrial; Lipid kinase that can phosphorylate both monoacylglycerol and diacylglycerol to form lysophosphatidic acid (LPA) and phosphatidic acid (PA), respectively. Does not phosphorylate sphingosine. Phosphorylates ceramide (By similarity). Phosphorylates 1,2-dioleoylglycerol more rapidly than 2,3- dioleoylglycerol (By similarity). Independently of its lipid kinase activity, acts as a component of the TIM22 complex. The TIM22 complex mediates the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane by forming a twin- [...]
     
 0.905
LPIN2
Phosphatidate phosphatase LPIN2; Plays important roles in controlling the metabolism of fatty acids at different levels. Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the reticulum endoplasmic membrane. Acts also as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism (By similarity).
    
 0.782
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (50%) [HD]