node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACP2 | NAAA | ENSP00000256997 | ENSP00000286733 | Acid phosphatase 2, lysosomal; Belongs to the histidine acid phosphatase family | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.724 |
FAAH | GPR55 | ENSP00000243167 | ENSP00000375894 | Fatty-acid amide hydrolase 1; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | 0.832 |
FAAH | MGLL | ENSP00000243167 | ENSP00000265052 | Fatty-acid amide hydrolase 1; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates | Monoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2-arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain (By similarity). Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth; Lipases | 0.924 |
FAAH | NAAA | ENSP00000243167 | ENSP00000286733 | Fatty-acid amide hydrolase 1; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.845 |
FAAH | NAPEPLD | ENSP00000243167 | ENSP00000407112 | Fatty-acid amide hydrolase 1; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates | N-acyl-phosphatidylethanolamine-hydrolysing phospholipase d; N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; Hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to produce N-acylethanolamines (NAEs) and phosphatidic acid. Responsible for the generation of anandamide (N- arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors (By similarity) | 0.965 |
FAAH2 | GPR55 | ENSP00000364035 | ENSP00000375894 | Fatty-acid amide hydrolase 2; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes monounsaturated substrate anandamide preferentially as compared to polyunsaturated substrates | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | 0.581 |
FAAH2 | MGLL | ENSP00000364035 | ENSP00000265052 | Fatty-acid amide hydrolase 2; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes monounsaturated substrate anandamide preferentially as compared to polyunsaturated substrates | Monoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2-arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain (By similarity). Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth; Lipases | 0.709 |
FAAH2 | NAAA | ENSP00000364035 | ENSP00000286733 | Fatty-acid amide hydrolase 2; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes monounsaturated substrate anandamide preferentially as compared to polyunsaturated substrates | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.804 |
FAAH2 | NAPEPLD | ENSP00000364035 | ENSP00000407112 | Fatty-acid amide hydrolase 2; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes monounsaturated substrate anandamide preferentially as compared to polyunsaturated substrates | N-acyl-phosphatidylethanolamine-hydrolysing phospholipase d; N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; Hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to produce N-acylethanolamines (NAEs) and phosphatidic acid. Responsible for the generation of anandamide (N- arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors (By similarity) | 0.795 |
FIG4 | LAMP2 | ENSP00000230124 | ENSP00000408411 | Phosphatidylinositol 3,5-bisphosphate 5-phosphatase; Polyphosphoinositide phosphatase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide substrates in the order PtdIns(4,5)P2 > PtdIns(3,5)P2 > PtdIns(3,4,5)P3. Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes | Lysosome-associated membrane glycoprotein 2; Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-live. Functions by binding target proteins, such as GAPDH and MLLT11, and targeting them for lysosomal degradation. Plays a role in lysosomal protein degradation in response to starvation (By similarity). Required for the fusion of autophagosomes with lysosomes during autophagy. Cells that lack LAMP2 express normal levels o [...] | 0.735 |
FIG4 | NAAA | ENSP00000230124 | ENSP00000286733 | Phosphatidylinositol 3,5-bisphosphate 5-phosphatase; Polyphosphoinositide phosphatase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide substrates in the order PtdIns(4,5)P2 > PtdIns(3,5)P2 > PtdIns(3,4,5)P3. Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.767 |
FIG4 | VAC14 | ENSP00000230124 | ENSP00000261776 | Phosphatidylinositol 3,5-bisphosphate 5-phosphatase; Polyphosphoinositide phosphatase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide substrates in the order PtdIns(4,5)P2 > PtdIns(3,5)P2 > PtdIns(3,4,5)P3. Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes | Protein VAC14 homolog; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Acts as a positive activator of PIKfyve kinase activity. Also required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes; Belongs to the VAC14 family | 0.999 |
GPR55 | FAAH | ENSP00000375894 | ENSP00000243167 | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | Fatty-acid amide hydrolase 1; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes polyunsaturated substrate anandamide preferentially as compared to monounsaturated substrates | 0.832 |
GPR55 | FAAH2 | ENSP00000375894 | ENSP00000364035 | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | Fatty-acid amide hydrolase 2; Degrades bioactive fatty acid amides like oleamide, the endogenous cannabinoid, anandamide and myristic amide to their corresponding acids, thereby serving to terminate the signaling functions of these molecules. Hydrolyzes monounsaturated substrate anandamide preferentially as compared to polyunsaturated substrates | 0.581 |
GPR55 | MGLL | ENSP00000375894 | ENSP00000265052 | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | Monoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2-arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain (By similarity). Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth; Lipases | 0.791 |
GPR55 | NAAA | ENSP00000375894 | ENSP00000286733 | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.647 |
GPR55 | NAPEPLD | ENSP00000375894 | ENSP00000407112 | G protein-coupled receptor 55; G-protein coupled receptor 55; May be involved in hyperalgesia associated with inflammatory and neuropathic pain (By similarity). Receptor for L- alpha-lysophosphatidylinositol (LPI). LPI induces Ca(2+) release from intracellular stores via the heterotrimeric G protein GNA13 and RHOA. Putative cannabinoid receptor. May play a role in bone physiology by regulating osteoclast number and function | N-acyl-phosphatidylethanolamine-hydrolysing phospholipase d; N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D; Hydrolyzes N-acyl-phosphatidylethanolamines (NAPEs) to produce N-acylethanolamines (NAEs) and phosphatidic acid. Responsible for the generation of anandamide (N- arachidonoylethanolamine), the ligand of cannabinoid and vanilloid receptors (By similarity) | 0.823 |
LAMP2 | FIG4 | ENSP00000408411 | ENSP00000230124 | Lysosome-associated membrane glycoprotein 2; Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-live. Functions by binding target proteins, such as GAPDH and MLLT11, and targeting them for lysosomal degradation. Plays a role in lysosomal protein degradation in response to starvation (By similarity). Required for the fusion of autophagosomes with lysosomes during autophagy. Cells that lack LAMP2 express normal levels o [...] | Phosphatidylinositol 3,5-bisphosphate 5-phosphatase; Polyphosphoinositide phosphatase; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide substrates in the order PtdIns(4,5)P2 > PtdIns(3,5)P2 > PtdIns(3,4,5)P3. Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes | 0.735 |
LAMP2 | NAAA | ENSP00000408411 | ENSP00000286733 | Lysosome-associated membrane glycoprotein 2; Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-live. Functions by binding target proteins, such as GAPDH and MLLT11, and targeting them for lysosomal degradation. Plays a role in lysosomal protein degradation in response to starvation (By similarity). Required for the fusion of autophagosomes with lysosomes during autophagy. Cells that lack LAMP2 express normal levels o [...] | N-acylethanolamine-hydrolysing acid amidase; N-acylethanolamine-hydrolyzing acid amidase; Degrades bioactive fatty acid amides to their corresponding acids, with the following preference: N- palmitoylethanolamine > N-myristoylethanolamine > N- lauroylethanolamine = N-stearoylethanolamine > N- arachidonoylethanolamine > N-oleoylethanolamine. Also exhibits weak hydrolytic activity against the ceramides N- lauroylsphingosine and N-palmitoylsphingosine | 0.766 |
LAMP2 | VAC14 | ENSP00000408411 | ENSP00000261776 | Lysosome-associated membrane glycoprotein 2; Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-live. Functions by binding target proteins, such as GAPDH and MLLT11, and targeting them for lysosomal degradation. Plays a role in lysosomal protein degradation in response to starvation (By similarity). Required for the fusion of autophagosomes with lysosomes during autophagy. Cells that lack LAMP2 express normal levels o [...] | Protein VAC14 homolog; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Acts as a positive activator of PIKfyve kinase activity. Also required to maintain normal levels of phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 5-phosphate (PtdIns(5)P). Plays a role in the biogenesis of endosome carrier vesicles (ECV) / multivesicular bodies (MVB) transport intermediates from early endosomes; Belongs to the VAC14 family | 0.731 |