STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PAPOLGPoly(A) polymerase gamma; Responsible for the post-transcriptional adenylation of the 3'-terminal of mRNA precursors and several small RNAs including signal recognition particle (SRP) RNA, nuclear 7SK RNA, U2 small nuclear RNA, and ribosomal 5S RNA. (736 aa)    
Predicted Functional Partners:
ZCCHC7
Zinc finger CCHC-type containing 7.
   
  
 0.995
MTREX
Exosome RNA helicase MTR4; Catalyzes the ATP-dependent unwinding of RNA duplexes with a single-stranded 3' RNA extension. Central subunit of many protein complexes, namely TRAMP-like, nuclear exosome targeting (NEXT) and poly(A) tail exosome targeting (PAXT). NEXT functions as an RNA exosome cofactor that directs a subset of non- coding short-lived RNAs for exosomal degradation. NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs. PAXT directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental [...]
   
 
 0.994
SYMPK
Symplekin; Scaffold protein that functions as a component of a multimolecular complex involved in histone mRNA 3'-end processing. Specific component of the tight junction (TJ) plaque, but might not be an exclusively junctional component. May have a house-keeping rule. Is involved in pre-mRNA polyadenylation. Enhances SSU72 phosphatase activity.
   
 
 0.994
SNRNP70
U1 small nuclear ribonucleoprotein 70 kDa; Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRNP70 binds to the loop I region of U1-snRNA. [Isoform 4]: Truncated isoforms that lack the RRM domain cannot bind U1-snRNA.
    
 
 0.988
CPSF3
Cleavage and polyadenylation specificity factor subunit 3; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as mRNA 3'- end-processing endonuclease. Also involved in the histone 3'-end pre- mRNA processing. U7 snRNP-dependent protein that induces both the 3'- endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' [...]
   
 
 0.967
CPSF1
Cleavage and polyadenylation specificity factor subunit 1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. This subunit is involved in the RNA recognition step of the polyadenylation reaction.
   
 
 0.961
FIP1L1
Pre-mRNA 3'-end-processing factor FIP1; Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex.
   
 
 0.958
WDR33
pre-mRNA 3' end processing protein WDR33; Essential for both cleavage and polyadenylation of pre-mRNA 3' ends.
   
 
 0.943
MTPAP
Poly(A) RNA polymerase, mitochondrial; Polymerase that creates the 3' poly(A) tail of mitochondrial transcripts. Can use all four nucleotides, but has higher activity with ATP and UTP (in vitro). Plays a role in replication-dependent histone mRNA degradation. May be involved in the terminal uridylation of mature histone mRNAs before their degradation is initiated. Might be responsible for the creation of some UAA stop codons which are not encoded in mtDNA.
   
  
 0.941
TUT1
Speckle targeted PIP5K1A-regulated poly(A) polymerase; Poly(A) polymerase that creates the 3'-poly(A) tail of specific pre-mRNAs. Localizes to nuclear speckles together with PIP5K1A and mediates polyadenylation of a select set of mRNAs, such as HMOX1. In addition to polyadenylation, it is also required for the 3'-end cleavage of pre-mRNAs: binds to the 3'UTR of targeted pre-mRNAs and promotes the recruitment and assembly of the CPSF complex on the 3'UTR of pre-mRNAs. In addition to adenylyltransferase activity, also has uridylyltransferase activity. However, the ATP ratio is higher tha [...]
   
  
 0.938
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (34%) [HD]