STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PLA1APhospholipase A1 member A; Hydrolyzes the ester bond at the sn-1 position of glycerophospholipids and produces 2-acyl lysophospholipids. Hydrolyzes phosphatidylserine (PS) in the form of liposomes and 1-acyl-2 lysophosphatidylserine (lyso-PS), but not triolein, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA) or phosphatidylinositol (PI). Isoform 2 hydrolyzes lyso-PS but not PS. Hydrolysis of lyso-PS in peritoneal mast cells activated by receptors for IgE leads to stimulate histamine production. Belongs to the AB hydrolase superfamily. Lipase family. (456 aa)    
Predicted Functional Partners:
PTDSS2
Phosphatidylserine synthase 2; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. PTDSS2 is specific for phosphatatidylethanolamine and does not act on phosphatidylcholine; Belongs to the phosphatidyl serine synthase family.
     
 0.926
PISD
Phosphatidylserine decarboxylase proenzyme, mitochondrial; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine. Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily.
   
 0.925
MBOAT1
Lysophospholipid acyltransferase 1; Acyltransferase which mediates the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L- serine or PS) (LPSAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle.
    
 0.920
POU2F3
POU domain, class 2, transcription factor 3; Transcription factor that binds to the octamer motif (5'- ATTTGCAT-3'). Regulated the expression of a number of genes such as SPRR2A or placental lactogen.
    
 
 0.919
PTDSS1
Phosphatidylserine synthase 1; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine.
     
 0.919
LPCAT3
Lysophospholipid acyltransferase 5; Acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (LPCAT activity). Catalyzes also the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L- serine or PS) (LPSAT activity). Has also weak lysophosphatidylethanolamine acyltransferase activity (LPEAT activity). Favors polyunsaturated fatty acyl-CoAs as acyl donors compa [...]
     
 0.916
MBOAT2
Lysophospholipid acyltransferase 2; Acyltransferase which mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn-glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3- phosphoethanolamine or PE) (LPEAT activity). Catalyzes also the acylation of lysophosphatidic acid (LPA) into phosphatidic acid (PA) (LPAAT activity). Has also a very weak lysophosphatidylcholine acyltransferase (LPCAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling p [...]
     
 0.915
LPCAT4
Lysophospholipid acyltransferase LPCAT4; Displays acyl-CoA-dependent lysophospholipid acyltransferase activity with a subset of lysophospholipids as substrates; converts lysophosphatidylethanolamine to phosphatidylethanolamine, lysophosphatidylcholine to phosphatidycholine, 1-alkenyl- lysophatidylethanolamine to 1-alkenyl-phosphatidylethanolamine, lysophosphatidylglycerol and alkyl-lysophosphatidylcholine to phosphatidylglycerol and alkyl-phosphatidylcholine, respectively. In contrast, has no lysophosphatidylinositol, glycerol-3-phosphate, diacylglycerol or lysophosphatidic acid acyltr [...]
    
 0.912
LPAR3
Lysophosphatidic acid receptor 3; Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities. May play a role in the development of ovarian cancer. Seems to be coupled to the G(i)/G(o) and G(q) families of heteromeric G proteins.
      
 0.755
LPAR6
Lysophosphatidic acid receptor 6; Binds to oleoyl-L-alpha-lysophosphatidic acid (LPA). Intracellular cAMP is involved in the receptor activation. Important for the maintenance of hair growth and texture.
   
  
 0.693
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (58%) [HD]