STRING protein interaction network
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
TRIM54Tripartite motif containing 54; Ring finger proteins (400 aa)    
Predicted Functional Partners:
Caveolae-associated protein 4; Modulates the morphology of formed caveolae in cardiomyocytes, but is not required for caveolar formation. Facilitates the recruitment of MAPK1/3 to caveolae within cardiomyocytes and regulates alpha-1 adrenergic receptor-induced hypertrophic responses in cardiomyocytes through MAPK1/3 activation. Contributes to proper membrane localization and stabilization of caveolin-3 (CAV3) in cardiomyocytes (By similarity). Induces RHOA activation and activates NPPA transcription and myofibrillar organization through the Rho/ROCK signaling pathway; Belongs to the CA [...]
Gamma-butyrobetaine dioxygenase; Catalyzes the formation of L-carnitine from gamma- butyrobetaine; Belongs to the gamma-BBH/TMLD family
F-box only protein 32; Substrate recognition component of a SCF (SKP1-CUL1-F- box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Probably recognizes and binds to phosphorylated target proteins during skeletal muscle atrophy. Recognizes TERF1; F-boxes other
Titin; Key component in the assembly and functioning of vertebrate striated muscles. By providing connections at the level of individual microfilaments, it contributes to the fine balance of forces between the two halves of the sarcomere. The size and extensibility of the cross-links are the main determinants of sarcomere extensibility properties of muscle. In non-muscle cells, seems to play a role in chromosome condensation and chromosome segregation during mitosis. Might link the lamina network to chromatin or nuclear actin, or both during interphase; Fibronectin type III domain containing
Filamin-C; Muscle-specific filamin, which plays a central role in muscle cells, probably by functioning as a large actin-cross- linking protein. May be involved in reorganizing the actin cytoskeleton in response to signaling events, and may also display structural functions at the Z lines in muscle cells. Critical for normal myogenesis and for maintaining the structural integrity of the muscle fibers
Next to BRCA1 gene 1 protein; Acts probably as a receptor for selective autophagosomal degradation of ubiquitinated targets; Zinc fingers ZZ-type
Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa
Tripartite motif-containing protein 66; May function as transcription repressor; The repressive effects are mediated, at least in part, by recruitment of deacetylase activity. May play a role as negative regulator of postmeiotic genes acting through CBX3 complex formation and centromere association (By similarity); Bromodomain containing
Telethonin; Muscle assembly regulating factor. Mediates the antiparallel assembly of titin (TTN) molecules at the sarcomeric Z-disk
Delta-aminolevulinic acid dehydratase; Catalyzes an early step in the biosynthesis of tetrapyrroles. Binds two molecules of 5-aminolevulinate per subunit, each at a distinct site, and catalyzes their condensation to form porphobilinogen; Belongs to the ALAD family
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, Homo sapiens, human, man
Server load: low (17%) [HD]