STRINGSTRING
atpD atpD atpA atpA atpB atpB atpC atpC atpE atpE atpF atpF atpG atpG atpH atpH adhD adhD rl16 rl16 rs11 rs11
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpDFoF1 membrane-bound proton-translocating ATPase, alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (501 aa)    
Predicted Functional Partners:
atpA
FoF1 membrane-bound proton-translocating ATPase, epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
atpB
FoF1 membrane-bound proton-translocating ATPase, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family.
 
0.999
atpC
FoF1 membrane-bound proton-translocating ATPase, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 0.999
atpE
FoF1 membrane-bound proton-translocating ATPase, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family.
 
 0.999
atpF
FoF1 membrane-bound proton-translocating ATPase, b subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpG
FoF1 membrane-bound proton-translocating ATPase, a subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane.
 
 0.999
atpH
FoF1 membrane-bound proton-translocating ATPase, c subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.999
adhD
Best Blastp Hit: pir||I40794 dihydrolipoamide dehydrogenase (EC 1.8.1.4) - Clostridium magnum >gi|472330|gb|AAA21748.1| (L31844) dihydrolipoamide dehydrogenase [Clostridium magnum].
  
 
 0.937
rl16
50S ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
  
 
 0.930
rs11
30S ribosomal protein S11; Located on the platform of the 30S subunit, it bridges several disparate RNA helices of the 16S rRNA. Forms part of the Shine- Dalgarno cleft in the 70S ribosome; Belongs to the universal ribosomal protein uS11 family.
   
 
 0.929
Your Current Organism:
Streptococcus mutans
NCBI taxonomy Id: 210007
Other names: S. mutans UA159, Streptococcus mutans UA159, Streptococcus mutans str. UA159
Server load: low (18%) [HD]