STRINGSTRING
ruvA ruvA ruvB ruvB ruvC ruvC AZC_0510 AZC_0510 recR recR recA recA recN recN mfd mfd recF recF AZC_0514 AZC_0514 queA queA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ruvADNA recombination protein; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (206 aa)    
Predicted Functional Partners:
ruvB
Holliday junction DNA helicase; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
 
 
 0.999
ruvC
Crossover junction endodeoxyribonuclease; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group.
 
 0.998
AZC_0510
Uncharacterized protein.
   
 0.760
recR
Recombination protein; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO.
 
   
 0.724
recA
RecA protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
 
  
 0.711
recN
DNA repair protein; May be involved in recombinational repair of damaged DNA.
 
  
 0.709
mfd
Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily.
 
   
 0.708
recF
DNA replication and repair protein; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP.
 
  
 0.707
AZC_0514
Conserved hypothetical transmembrane protein precursor.
       0.705
queA
S-adenosylmethionine; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA).
  
  
 0.703
Your Current Organism:
Azorhizobium caulinodans
NCBI taxonomy Id: 438753
Other names: A. caulinodans ORS 571, Azorhizobium caulinodans ORS 571, Azorhizobium caulinodans str. ORS 571, Azorhizobium caulinodans strain ORS 571, Rhizobium sp. ORS 571
Server load: low (16%) [HD]