STRINGSTRING
glyS glyS glyQ glyQ leuS leuS aspS aspS ileS ileS valS valS pheT pheT proS proS thrS thrS alaS alaS fusA fusA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glySGlycine tRNA synthetase, beta subunit; COG0751. (689 aa)    
Predicted Functional Partners:
glyQ
Glycine tRNA synthetase, alpha subunit; COG0752.
 0.999
leuS
Leucine tRNA synthetase; COG0495; Belongs to the class-I aminoacyl-tRNA synthetase family.
   
  
 0.720
aspS
Aspartate tRNA synthetase; Catalyzes the attachment of L-aspartate to tRNA(Asp) in a two-step reaction: L-aspartate is first activated by ATP to form Asp- AMP and then transferred to the acceptor end of tRNA(Asp). Belongs to the class-II aminoacyl-tRNA synthetase family. Type 1 subfamily.
  
  
 0.707
ileS
Isoleucine tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily.
 
  
 0.701
valS
Valine tRNA synthetase; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a 'posttransfer' editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA- dependent manner; Belongs to the class-I aminoacyl-tRNA synthetase family. ValS type 1 subfamily.
  
  
 0.688
pheT
Phenylalanine tRNA synthetase, beta-subunit; COG0072; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
  
  
 0.624
proS
Proline tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves de [...]
   
  
 0.610
thrS
Threonine tRNA synthetase; Catalyzes the attachment of threonine to tRNA(Thr) in a two- step reaction: L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr).
  
  
 0.599
alaS
alanyl-tRNA synthetase; Catalyzes the attachment of alanine to tRNA(Ala) in a two- step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain; Belongs to the class-II aminoacyl-tRNA synthetase family.
   
  
 0.596
fusA
Protein chain elongation factor EF-G, GTP-binding; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase f [...]
   
    0.551
Your Current Organism:
Hamiltonella defensa
NCBI taxonomy Id: 572265
Other names: C. Hamiltonella defensa 5AT (Acyrthosiphon pisum), Candidatus Hamiltonella defensa 5AT (Acyrthosiphon pisum), Candidatus Hamiltonella defensa str. 5AT (Acyrthosiphon pisum), Candidatus Hamiltonella defensa strain 5AT (Acyrthosiphon pisum)
Server load: low (20%) [HD]