STRINGSTRING
SRSF8 SRSF8 SRPK1 SRPK1 SRSF9 SRSF9 CLK3 CLK3 SRSF3 SRSF3 TRA2A TRA2A SRPK2 SRPK2 HNRNPA2B1 HNRNPA2B1 SRSF7 SRSF7 SRSF11 SRSF11 TRA2B TRA2B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SRSF8Serine/arginine-rich splicing factor 8; Involved in pre-mRNA alternative splicing. (282 aa)    
Predicted Functional Partners:
SRPK1
SRSF protein kinase 1; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activiti [...]
    
 0.933
SRSF9
Serine/arginine-rich splicing factor 9; Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10. Belongs to the splicing factor SR family.
   
 0.862
CLK3
Dual specificity protein kinase CLK3; Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine- rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Phosphorylates SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre- mRNA in endothelial cells; Belongs to the protein kinase superfamily. CMGC Se [...]
   
 
 0.831
SRSF3
Serine/arginine-rich splicing factor 3; Splicing factor that specifically promotes exon-inclusion during alternative splicing. Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, promotes recruitment of SRSF3 to its mRNA- binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing. Also functions as export adapter involved in mRNA nuclear export. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA-binding activity. [...]
   
0.823
TRA2A
Transformer-2 protein homolog alpha; Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing.
  
 
0.818
SRPK2
SRSF protein kinase 2 C-terminal; Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression. This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression. Phosphorylates [...]
    
 
 0.799
HNRNPA2B1
Heterogeneous nuclear ribonucleoproteins A2/B1; Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs. Forms hnRNP particles with at least 20 other different hnRNP and he [...]
  
 0.780
SRSF7
Serine/arginine-rich splicing factor 7; Required for pre-mRNA splicing. Can also modulate alternative splicing in vitro. Represses the splicing of MAPT/Tau exon 10. May function as export adapter involved in mRNA nuclear export such as of histone H2A. Binds mRNA which is thought to be transferred to the NXF1- NXT1 heterodimer for export (TAP/NXF1 pathway); enhances NXF1-NXT1 RNA- binding activity. RNA-binding is semi-sequence specific.
   
0.774
SRSF11
Serine/arginine-rich splicing factor 11; May function in pre-mRNA splicing.
   
 
 0.772
TRA2B
Transformer-2 protein homolog beta; Sequence-specific RNA-binding protein which participates in the control of pre-mRNA splicing. Can either activate or suppress exon inclusion. Acts additively with RBMX to promote exon 7 inclusion of the survival motor neuron SMN2. Activates the splicing of MAPT/Tau exon 10. Alters pre-mRNA splicing patterns by antagonizing the effects of splicing regulators, like RBMX. Binds to the AG-rich SE2 domain in the SMN exon 7 RNA. Binds to pre-mRNA. Belongs to the splicing factor SR family.
  
0.759
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (28%) [HD]