STRINGSTRING
ATP5IF1 ATP5IF1 ATP5F1C ATP5F1C ATP5F1A ATP5F1A ATP5F1B ATP5F1B A0A287ANH8_PIG A0A287ANH8_PIG ATP5ME ATP5ME ATP5F1D ATP5F1D ATP5MC1 ATP5MC1 ATP5F1E ATP5F1E ATP5PB ATP5PB ATP5MD ATP5MD
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATP5IF1ATPase inhibitor, mitochondrial; Endogenous F(1)F(o)-ATPase inhibitor limiting ATP depletion when the mitochondrial membrane potential falls below a threshold and the F(1)F(o)-ATP synthase starts hydrolyzing ATP to pump protons out of the mitochondrial matrix. Required to avoid the consumption of cellular ATP when the F(1)F(o)-ATP synthase enzyme acts as an ATP hydrolase. Indirectly acts as a regulator of heme synthesis in erythroid tissues: regulates heme synthesis by modulating the mitochondrial pH and redox potential, allowing FECH to efficiently catalyze the incorporation of iron i [...] (108 aa)    
Predicted Functional Partners:
ATP5F1C
ATP synthase subunit gamma.
   
 
 0.983
ATP5F1A
ATP synthase subunit alpha, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...]
    
 
 0.972
ATP5F1B
ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane.
   
 
 0.969
A0A287ANH8_PIG
Uncharacterized protein.
   
 
 0.964
ATP5ME
ATP synthase subunit e, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the cent [...]
   
 
 0.885
ATP5F1D
ATP synthase subunit delta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...]
   
 
 0.880
ATP5MC1
ATP synthase F(0) complex subunit C1, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...]
    
 
 0.872
ATP5F1E
Uncharacterized protein.
   
 
 0.857
ATP5PB
ATP synthase peripheral stalk-membrane subunit b.
   
   0.843
ATP5MD
ATP synthase membrane subunit DAPIT.
   
   0.842
Your Current Organism:
Sus scrofa
NCBI taxonomy Id: 9823
Other names: S. scrofa, pig, pigs, swine, wild boar
Server load: low (20%) [HD]