Your Input: | |||||
| Casq1 | Calsequestrin-1; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, often at the interface between subunits. Can bind around 80 Ca(2+) ions (By similarity). Regulates the release of lumenal Ca(2+) via the calcium release channel RYR1; this plays an important role in triggering muscle contraction. Negatively regulates store-operated Ca(2+) entry (SOCE) activity (By similarity). (405 aa) | ||||
| Jph2 | Junctophilin-2 N-terminal fragment; [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes. Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads. Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its involvement in rya [...] (696 aa) | ||||
| Nos2 | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2. As component of the iNOS- S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (By similarity [...] (1144 aa) | ||||
| Calm3 | Calmodulin-1; Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis. Mediates calcium- dependent inactivation of CACNA1C. Positively regulates calcium- activated potassium channel activity of KCNN2. (149 aa) | ||||
| Atp2b1 | Plasma membrane calcium-transporting ATPase 1; Catalyzes the hydrolysis of ATP coupled with the transport of calcium from the cytoplasm to the extracellular space thereby maintaining intracellular calcium homeostasis. Plays a role in blood pressure regulation through regulation of intracellular calcium concentration and nitric oxide production leading to regulation of vascular smooth muscle cells vasoconstriction. Positively regulates bone mineralization through absorption of calcium from the intestine. Plays dual roles in osteoclast differentiation and survival by regulating RANKL-ind [...] (1220 aa) | ||||
| Fkbp1b | Peptidyl-prolyl cis-trans isomerase FKBP1B; Has the potential to contribute to the immunosuppressive and toxic effects of FK506 and rapamycin. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity); Belongs to the FKBP-type PPIase family. FKBP1 subfamily. (108 aa) | ||||
| Atp2a3 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. (1038 aa) | ||||
| Ryr2 | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] (4966 aa) | ||||
| Jph4 | Junctophilin-4; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH4 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. (628 aa) | ||||
| Srl | Sarcalumenin; May be involved in the regulation of calcium transport. (910 aa) | ||||
| Jph3 | Junctophilin-3; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. (744 aa) | ||||
| Casq2 | Calsequestrin-2; Calsequestrin is a high-capacity, moderate affinity, calcium- binding protein and thus acts as an internal calcium store in muscle. Calcium ions are bound by clusters of acidic residues at the protein surface, especially at the interface between subunits. Can bind around 60 Ca(2+) ions. Regulates the release of lumenal Ca(2+) via the calcium release channel RYR2; this plays an important role in triggering muscle contraction. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. (415 aa) | ||||
| Nos3 | Nitric oxide synthase, endothelial; Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. May play a significant role in normal and abnormal limb development; Belongs to the NOS family. (1202 aa) | ||||
| Atp2a2 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform SERCA2A is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytos [...] (1044 aa) | ||||
| Itpr1 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1. Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways. (2749 aa) | ||||
| Atp2a1 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. (994 aa) | ||||
| Calml4 | Calmodulin-like protein 4. (153 aa) | ||||
| Sln | Sarcolipin; Reversibly inhibits the activity of ATP2A1 in sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in muscle. Required for muscle-based, non-shivering thermogenesis. (31 aa) | ||||
| Jph1 | Junctophilin-1; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. (660 aa) | ||||
| Calm4 | Calmodulin-4; Implicated in the early stage of ectopic ossification. (148 aa) | ||||
| Pln | Cardiac phospholamban; Reversibly inhibits the activity of ATP2A2 in cardiac sarcoplasmic reticulum by decreasing the apparent affinity of the ATPase for Ca(2+). Modulates the contractility of the heart muscle in response to physiological stimuli via its effects on ATP2A2. Modulates calcium re-uptake during muscle relaxation and plays an important role in calcium homeostasis in the heart muscle. The degree of ATP2A2 inhibition depends on the oligomeric state of PLN. ATP2A2 inhibition is alleviated by PLN phosphorylation; Belongs to the phospholamban family. (52 aa) | ||||
| Camk2g | Calcium/calmodulin-dependent protein kinase type II subunit gamma; Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity. In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-cou [...] (529 aa) | ||||
| Calml3 | Calmodulin-like protein 3; May function as a specific light chain of unconventional myosin-10 (MYO10), also enhances MYO10 translation, possibly by acting as a chaperone for the emerging MYO10 heavy chain protein. May compete with calmodulin by binding, with different affinities, to cellular substrates (By similarity). (149 aa) | ||||
| Asph | Aspartyl/asparaginyl beta-hydroxylase; [Isoform 1]: specifically hydroxylates an Asp or Asn residue in certain epidermal growth factor-like (EGF) domains of a number of proteins; Belongs to the aspartyl/asparaginyl beta-hydroxylase family. (741 aa) | ||||
| Htt | Huntingtin, myristoylated N-terminal fragment; [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function. (3120 aa) | ||||
| Gm45837 | Phosphodiesterase. (961 aa) | ||||
| Atp2c1 | Calcium-transporting ATPase type 2C member 1; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium. (952 aa) | ||||
| Hrc | Histidine-rich calcium-binding protein. (738 aa) | ||||
| Atp2b3 | Calcium-transporting ATPase; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. (1220 aa) | ||||
| Trdn | Triadin; Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact. Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. (693 aa) | ||||
| Cacna1c | Voltage-dependent L-type calcium channel subunit alpha-1C; Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm. Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via [...] (2222 aa) | ||||
| Sypl2 | Synaptophysin-like protein 2; Involved in communication between the T-tubular and junctional sarcoplasmic reticulum (SR) membranes. (264 aa) | ||||
| Atp2b4 | Plasma membrane calcium-transporting ATPase 4; Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (By similarity). By regulating sperm cell calcium homeostasis, may play a role in sperm motility ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIB subfamily. (1205 aa) | ||||
| Nos1 | Nitric oxide synthase, brain; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Isoform NNOS Mu may be an effector enzyme for the dystrophin complex. (1429 aa) | ||||
| Slc8a1 | Sodium/calcium exchanger 1; Mediates the exchange of one Ca(2+) ion against three to four Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In a first phase, voltage- gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A1 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels r [...] (970 aa) | ||||
| Slc8a3 | Sodium/calcium exchanger 3; Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels r [...] (928 aa) | ||||
| Calm5 | Skin calmodulin-related protein 2. (140 aa) | ||||
| Ryr3 | Ryanodine receptor 3; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Plays a role in cellular calcium signaling. Contributes to cellular calcium ion homeostasis. Isoform 2 lacks a predicted transmembrane segment and does not form functional calcium channels by itself; however, it can form tetramers [...] (4868 aa) | ||||
| Slc8a2 | Sodium/calcium exchanger 2; Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells. Contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory. Plays a role in regulating urinary Ca(2+) and Na(+) excretion. (921 aa) | ||||