STRINGSTRING
Adora3 Adora3 Ptger1 Ptger1 Rgs9 Rgs9 Gng4 Gng4 Drd3 Drd3 Gnb3 Gnb3 Rgs11 Rgs11 Gnaq Gnaq Gna14 Gna14 Plcb3 Plcb3 Ric8a Ric8a Drd4 Drd4 Rgs18 Rgs18 Rgs16 Rgs16 Rgs4 Rgs4 Rgs5 Rgs5 Rgs12 Rgs12 Gng11 Gng11 Gnb2 Gnb2 Gnaz Gnaz Prex1 Prex1 Ptger2 Ptger2 Chrm4 Chrm4 Gng10 Gng10 Gna11 Gna11 Ptger3 Ptger3 Rgs8 Rgs8 Gpsm3 Gpsm3 Gng12 Gng12 Ric8b Ric8b Gngt2 Gngt2 Ptger4 Ptger4 Ccdc88a Ccdc88a Gna15 Gna15 Gnai2 Gnai2 Adcyap1r1 Adcyap1r1 Rgs9bp Rgs9bp Rgs17 Rgs17 Rgs7bp Rgs7bp Gpsm1 Gpsm1 Rgs14 Rgs14 Casr Casr Adra1b Adra1b Gnai1 Gnai1 Gng8 Gng8 Rgs3 Rgs3 Adora1 Adora1 Grk2 Grk2 Hrh1 Hrh1 Gng3 Gng3 Gng7 Gng7 Htr7 Htr7 Chrm5 Chrm5 Adra1d Adra1d Plcb4 Plcb4 Rgs13 Rgs13 Rgs20 Rgs20 Gng5 Gng5 Gnb4 Gnb4 Adra1a Adra1a Gng2 Gng2 Chrm1 Chrm1 Gng13 Gng13 Gm20503 Gm20503 Gm5741 Gm5741 Rgs21 Rgs21 Rgs6 Rgs6 Chrm3 Chrm3 Gnas Gnas Rgs1 Rgs1 Rgs7 Rgs7 Gnao1 Gnao1 Gnb5 Gnb5 Gm4356 Gm4356
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Adora3Adenosine receptor A3; Receptor for adenosine. The activity of this receptor is mediated by G proteins which inhibits adenylyl cyclase. (319 aa)
Ptger1Prostaglandin E2 receptor EP1 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(q) proteins which activate a phosphatidylinositol-calcium second messenger system. May play a role as an important modulator of renal function. Implicated the smooth muscle contractile response to PGE2 in various tissues; Belongs to the G-protein coupled receptor 1 family. (405 aa)
Rgs9Regulator of G-protein signaling 9; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to GNAT1. Involved in phototransduction; key element in the recovery phase of visual transduction. (675 aa)
Gng4Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
Drd3D(3) dopamine receptor; Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation (By similarity); Belongs to the G-protein coupled receptor 1 family. (446 aa)
Gnb3Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
Rgs11Regulator of G-protein signaling 11; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. (466 aa)
GnaqGuanine nucleotide-binding protein G(q) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity. Regulates chemotaxis of BM- derived neutrophils and dendritic cells (in vitro). Belongs to the G-alpha family. G(q) subfamily. (359 aa)
Gna14Guanine nucleotide-binding protein subunit alpha-14; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems; Belongs to the G-alpha family. G(q) subfamily. (355 aa)
Plcb31-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. (1234 aa)
Ric8aSynembryn-A; Guanine nucleotide exchange factor (GEF), which can activate some, but not all, G-alpha proteins. Able to activate GNAI1, GNAO1 and GNAQ, but not GNAS by exchanging bound GDP for free GTP. Involved in regulation of microtubule pulling forces during mitotic movement of chromosomes by stimulating G(i)-alpha protein, possibly leading to release G(i)-alpha-GTP and NuMA proteins from the NuMA-GPSM2-G(i)- alpha-GDP complex. Also acts as an activator for G(q)-alpha (GNAQ) protein by enhancing the G(q)-coupled receptor-mediated ERK activation (By similarity); Belongs to the synemb [...] (530 aa)
Drd4D(4) dopamine receptor; Dopamine receptor responsible for neuronal signaling in the mesolimbic system of the brain, an area of the brain that regulates emotion and complex behavior. Activated by dopamine, but also by epinephrine and norepinephrine, and by numerous synthetic agonists and drugs. Agonist binding triggers signaling via G proteins that inhibit adenylyl cyclase (By similarity). Modulates the circadian rhythm of contrast sensitivity by regulating the rhythmic expression of NPAS2 in the retinal ganglion cells. (387 aa)
Rgs18Regulator of G-protein signaling 18; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i) alpha-1, G(i) alpha-2, G(i) alpha-3 and G(q) alpha. (235 aa)
Rgs16Regulator of G-protein signaling 16; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Plays an important role in the phototransduction cascade by regulating the lifetime and effective concentration of activated transducin alpha. May regulate extra and intracellular mitogenic signals. (201 aa)
Rgs4Regulator of G-protein signaling 4; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Activity on G(z)-alpha is inhibited by phosphorylation of the G-protein. Activity on G(z)-alpha and G(i)- alpha-1 is inhibited by palmitoylation of the G-protein (By similarity). (205 aa)
Rgs5Regulator of G-protein signaling 5; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i)-alpha and G(o)-alpha, but not to G(s)-alpha. (181 aa)
Rgs12Regulator of G-protein signaling 12; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. (1381 aa)
Gng11Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). (73 aa)
Gnb2Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
GnazGuanine nucleotide-binding protein G(z) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. (355 aa)
Prex1Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein; Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils (By similarity). (1650 aa)
Ptger2Prostaglandin E2 receptor EP2 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. The subsequent raise in intracellular cAMP is responsible for the relaxing effect of this receptor on smooth muscle; Belongs to the G-protein coupled receptor 1 family. (362 aa)
Chrm4Muscarinic acetylcholine receptor M4; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is inhibition of adenylate cyclase; Belongs to the G-protein coupled receptor 1 family. Muscarinic acetylcholine receptor subfamily. CHRM4 sub-subfamily. (479 aa)
Gng10Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Interacts with beta-1 and beta-2, but not with beta-3 (By similarity). (68 aa)
Gna11Guanine nucleotide-binding protein subunit alpha-11; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Acts as an activator of phospholipase C. (359 aa)
Ptger3Prostaglandin E2 receptor EP3 subtype; Receptor for prostaglandin E2 (PGE2). Required for normal development of fever in response to pyrinogens, including IL1B, prostaglandin E2 and bacterial lipopolysaccharide (LPS). Required for normal potentiation of platelet aggregation by prostaglandin E2, and thus plays a role in the regulation of blood coagulation. Required for increased HCO3(-) secretion in the duodenum in response to mucosal acidification, and thereby contributes to the protection of the mucosa against acid-induced ulceration. Not required for normal kidney function, normal ur [...] (362 aa)
Rgs8Regulator of G-protein signaling 8; Regulates G protein-coupled receptor signaling cascades, including signaling via muscarinic acetylcholine receptor CHRM2 and dopamine receptor DRD2. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Modulates the activity of potassium channels that are activated in response to DRD2 and CHRM2 signaling. (180 aa)
Gpsm3G-protein-signaling modulator 3; Interacts with subunit of G(i) alpha proteins and regulates the activation of G(i) alpha proteins. (159 aa)
Gng12Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (72 aa)
Ric8bSynembryn-B; Guanine nucleotide exchange factor (GEF), which can activate some, but not all, G-alpha proteins by exchanging bound GDP for free GTP (By similarity). Able to potentiate G(olf)-alpha-dependent cAMP accumulation suggesting that it may be an important component for odorant signal transduction. (560 aa)
Gngt2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-T2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (69 aa)
Ptger4Prostaglandin E2 receptor EP4 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor is mediated by G(s) proteins that stimulate adenylate cyclase. Has a relaxing effect on smooth muscle. May play an important role in regulating renal hemodynamics, intestinal epithelial transport, adrenal aldosterone secretion, and uterine function. (513 aa)
Ccdc88aGirdin; Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (By similarity). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (By similarity). Essential for cell migration (By similarity). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting E [...] (1845 aa)
Gna15Guanine nucleotide-binding protein subunit alpha-15; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. (374 aa)
Gnai2Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta- adrenergic stimuli. May play a role in cell division. (355 aa)
Adcyap1r1Pituitary adenylate cyclase-activating polypeptide type I receptor; This is a receptor for PACAP-27 and PACAP-38. The activity of this receptor is mediated by G proteins which activate adenylyl cyclase. May regulate the release of adrenocorticotropin, luteinizing hormone, growth hormone, prolactin, epinephrine, and catecholamine. May play a role in spermatogenesis and sperm motility. Causes smooth muscle relaxation and secretion in the gastrointestinal tract. (496 aa)
Rgs9bpRegulator of G-protein signaling 9-binding protein; Regulator of G protein-coupled receptor (GPCR) signaling in phototransduction. Participates in the recovery phase of visual transduction via its interaction with RGS9-1 isoform. Acts as a membrane-anchor that mediates the targeting of RGS9-1 to the photoreceptor outer segment, where phototransduction takes place. Enhances the ability of RGS9-1 to stimulate G protein GTPase activity, allowing the visual signal to be terminated on the physiologically time scale. It also controls the proteolytic stability of RGS9-1, probably by protectin [...] (237 aa)
Rgs17Regulator of G-protein signaling 17; Regulates G protein-coupled receptor signaling cascades, including signaling via muscarinic acetylcholine receptor CHRM2 and dopamine receptor DRD2 (By similarity). Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Binds selectively to GNAZ and GNAI2 subunits, accelerates their GTPase activity and regulates their signaling activities. Negatively regulates mu-opioid receptor-mediated activation of the G-proteins. (230 aa)
Rgs7bpRegulator of G-protein signaling 7-binding protein; Regulator of G protein-coupled receptor (GPCR) signaling. Regulatory subunit of the R7-Gbeta5 complexes that acts by controlling the subcellular location of the R7-Gbeta5 complexes. When palmitoylated, it targets the R7-Gbeta5 complexes to the plasma membrane, leading to inhibit G protein alpha subunits. When it is unpalmitoylated, the R7-Gbeta5 complexes undergo a nuclear/cytoplasmic shuttling. May also act by controlling the proteolytic stability of R7 proteins, probably by protecting them from degradation. Belongs to the RGS7BP/RGS [...] (257 aa)
Gpsm1G-protein-signaling modulator 1; Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G- protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein- coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. Belongs to the GPSM family. (705 aa)
Rgs14Regulator of G-protein signaling 14; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o) alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pa [...] (547 aa)
CasrExtracellular calcium-sensing receptor; G-protein-coupled receptor that senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis (By similarity). Senses fluctuations in the circulating calcium concentration and modulates the production of parathyroid hormone (PTH) in parathyroid glands. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system (By similarity). The G-protein-coupled receptor activity is activated by a co-agonist mechanism: aromatic amino [...] (1079 aa)
Adra1bAlpha-1B adrenergic receptor; This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes (By similarity). (515 aa)
Gnai1Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa)
Gng8Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-8; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. This subunit may have a very specific role in the development and turnover of olfactory and vomeronasal neurons. (70 aa)
Rgs3Regulator of G-protein signaling 3; Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein- mediated release of inositol phosphates and activation of MAP kinases. (966 aa)
Adora1Adenosine receptor A1; Receptor for adenosine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family. (326 aa)
Grk2Beta-adrenergic receptor kinase 1; Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them. Key regulator of LPAR1 signaling. Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor. Desensitizes LPAR1 and LPAR2 in a phosphorylation- independent manner. Positively regulates ciliary smoothened (SMO)- dependent Hedgehog (Hh) signaling pathway by facilitating the trafficking of SMO into the cilium and the stimulation of SMO activity. Belongs to the protei [...] (689 aa)
Hrh1Histamine H1 receptor; In peripheral tissues, the H1 subclass of histamine receptors mediates the contraction of smooth muscles, increase in capillary permeability due to contraction of terminal venules, and catecholamine release from adrenal medulla, as well as mediating neurotransmission in the central nervous system. Involved in circadian rhythm of locomotor activity and exploratory behavior. Also involved in responsiveness to pertussis toxin through its control of susceptibility to histamine hypersensitivity and enhancement of antigen-specific delayed-type hypersensitivity responses. (488 aa)
Gng3Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa)
Gng7Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Plays a role in the regulation of adenylyl cyclase signaling in certain regions of the brain. Plays a role in the formation or stabilzation of a G protein heterotrimer (G(olf) subunit alpha-beta-gamma-7) that is required for adenylyl cyclase activity in t [...] (69 aa)
Htr75-hydroxytryptamine receptor 7; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins that stimulate adenylate cyclase; Belongs to the G-protein coupled receptor 1 family. (470 aa)
Chrm5Muscarinic acetylcholine receptor M5; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover (By similarity); Belongs to the G-protein coupled receptor 1 family. Muscarinic acetylcholine receptor subfamily. CHRM5 sub-subfamily. (532 aa)
Adra1dAlpha-1D adrenergic receptor; This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium. (562 aa)
Plcb41-phosphatidylinositol 4,5-bisphosphate phosphodiesterase; The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. (1175 aa)
Rgs13Regulator of G-protein signaling 13; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to both G(i)-alpha and G(q)-alpha. (158 aa)
Rgs20Regulator of G-protein signaling 20; Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds selectively to G(z)-alpha and G(alpha)- i2 subunits, accelerates their GTPase activity and regulates their signaling activities. The G(z)-alpha activity is inhibited by the phosphorylation and palmitoylation of the G-protein. Negatively regulates mu-opioid receptor-mediated activation of the G-proteins. (372 aa)
Gng5Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
Gnb4Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa)
Adra1aAlpha-1A adrenergic receptor; This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol- calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes (By similarity). (466 aa)
Gng2Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (71 aa)
Chrm1Muscarinic acetylcholine receptor M1; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover. (460 aa)
Gng13Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (67 aa)
Gm20503Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (150 aa)
Gm5741Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (72 aa)
Rgs21Regulator of G-protein signalling 21. (152 aa)
Rgs6Regulator of G-protein signaling 6; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. The RGS6/GNB5 dimer enhances GNAO1 GTPase activity. (490 aa)
Chrm3Muscarinic acetylcholine receptor M3; The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover; Belongs to the G-protein coupled receptor 1 family. Muscarinic acetylcholine receptor subfamily. CHRM3 sub-subfamily. (589 aa)
GnasGuanine nucleotide-binding protein G(s) subunit alpha isoforms XLas; Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein- coupled receptors (GPCRs). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as Gnas isoforms. (1133 aa)
Rgs1Regulator of G-protein signaling 1; Regulates G protein-coupled receptor signaling cascades, including signaling downstream of the N-formylpeptide chemoattractant receptors and leukotriene receptors. Inhibits B cell chemotaxis toward CXCL12. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form (By similarity). (209 aa)
Rgs7Regulator of G-protein signaling 7; Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP- bound form. The RGS7/GNB5 dimer enhances GNAO1 GTPase activity. May play a role in synaptic vesicle exocytosis. Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling. (477 aa)
Gnao1Guanine nucleotide-binding protein G(o) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Stimulated by RGS14. The G(o) protein function is not clear. (354 aa)
Gnb5Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors (By similarity). May play an important role in neuronal signaling, incl [...] (395 aa)
Gm4356Guanine nucleotide-binding protein subunit gamma; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa)
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (16%) [HD]