node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Acmsd | Afmid | ENSMUSP00000048482 | ENSMUSP00000073102 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | 0.712 |
Acmsd | Haao | ENSMUSP00000048482 | ENSMUSP00000000687 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | 0.994 |
Acmsd | Ido1 | ENSMUSP00000048482 | ENSMUSP00000033956 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Indoleamine 2,3-dioxygenase 1; Catalyzes the first and rate limiting step of the catabolism of the essential amino acid tryptophan along the kynurenine pathway. Involved in the peripheral immune tolerance, contributing to maintain homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. Tryptophan shortage inhibits T lymphocytes division and accumulation of tryptophan catabolites induces T-cell apoptosis and differentiation of regulatory T-cells. Acts as a suppressor of anti-tumor immunity. Limits the growth of int [...] | 0.576 |
Acmsd | Ido2 | ENSMUSP00000048482 | ENSMUSP00000113979 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Indoleamine 2,3-dioxygenase 2; Catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan catabolism. Involved in immune regulation. | 0.565 |
Acmsd | Kmo | ENSMUSP00000048482 | ENSMUSP00000038914 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Kynurenine 3-monooxygenase; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract. | 0.898 |
Acmsd | Kynu | ENSMUSP00000048482 | ENSMUSP00000028223 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Kynureninase; Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively. Has a preference for the L-3-hydroxy form. Also has cysteine-conjugate-beta-lyase activity. | 0.926 |
Acmsd | Tdo2 | ENSMUSP00000048482 | ENSMUSP00000029645 | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | Tryptophan 2,3-dioxygenase; Heme-dependent dioxygenase that catalyzes the oxidative cleavage of the L-tryptophan (L-Trp) pyrrole ring and converts L- tryptophan to N-formyl-L-kynurenine. Catalyzes the oxidative cleavage of the indole moiety. | 0.813 |
Afmid | Acmsd | ENSMUSP00000073102 | ENSMUSP00000048482 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | 0.712 |
Afmid | Gcdh | ENSMUSP00000073102 | ENSMUSP00000003907 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Glutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L- hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor; Belongs to the acyl-CoA dehydrogenase family. | 0.401 |
Afmid | Haao | ENSMUSP00000073102 | ENSMUSP00000000687 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | 0.832 |
Afmid | Ido1 | ENSMUSP00000073102 | ENSMUSP00000033956 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Indoleamine 2,3-dioxygenase 1; Catalyzes the first and rate limiting step of the catabolism of the essential amino acid tryptophan along the kynurenine pathway. Involved in the peripheral immune tolerance, contributing to maintain homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. Tryptophan shortage inhibits T lymphocytes division and accumulation of tryptophan catabolites induces T-cell apoptosis and differentiation of regulatory T-cells. Acts as a suppressor of anti-tumor immunity. Limits the growth of int [...] | 0.963 |
Afmid | Ido2 | ENSMUSP00000073102 | ENSMUSP00000113979 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Indoleamine 2,3-dioxygenase 2; Catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan catabolism. Involved in immune regulation. | 0.977 |
Afmid | Kmo | ENSMUSP00000073102 | ENSMUSP00000038914 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Kynurenine 3-monooxygenase; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract. | 0.987 |
Afmid | Kynu | ENSMUSP00000073102 | ENSMUSP00000028223 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Kynureninase; Catalyzes the cleavage of L-kynurenine (L-Kyn) and L-3- hydroxykynurenine (L-3OHKyn) into anthranilic acid (AA) and 3- hydroxyanthranilic acid (3-OHAA), respectively. Has a preference for the L-3-hydroxy form. Also has cysteine-conjugate-beta-lyase activity. | 0.982 |
Afmid | Tdo2 | ENSMUSP00000073102 | ENSMUSP00000029645 | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | Tryptophan 2,3-dioxygenase; Heme-dependent dioxygenase that catalyzes the oxidative cleavage of the L-tryptophan (L-Trp) pyrrole ring and converts L- tryptophan to N-formyl-L-kynurenine. Catalyzes the oxidative cleavage of the indole moiety. | 0.984 |
Gcdh | Afmid | ENSMUSP00000003907 | ENSMUSP00000073102 | Glutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L- hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor; Belongs to the acyl-CoA dehydrogenase family. | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | 0.401 |
Haao | Acmsd | ENSMUSP00000000687 | ENSMUSP00000048482 | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase; Converts alpha-amino-beta-carboxymuconate-epsilon- semialdehyde (ACMS) to alpha-aminomuconate semialdehyde (AMS). ACMS can be converted non-enzymatically to quinolate (QA), a key precursor of NAD, and a potent endogenous excitotoxin of neuronal cells which is implicated in the pathogenesis of various neurodegenerative disorders. In the presence of ACMSD, ACMS is converted to AMS, a benign catabolite. ACMSD ultimately controls the metabolic fate of tryptophan catabolism along the kynurenine pathway; Belongs to the metallo-dependent [...] | 0.994 |
Haao | Afmid | ENSMUSP00000000687 | ENSMUSP00000073102 | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | Kynurenine formamidase; Catalyzes the hydrolysis of N-formyl-L-kynurenine to L- kynurenine, the second step in the kynurenine pathway of tryptophan degradation. Kynurenine may be further oxidized to nicotinic acid, NAD(H) and NADP(H). Required for elimination of toxic metabolites. | 0.832 |
Haao | Ido1 | ENSMUSP00000000687 | ENSMUSP00000033956 | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | Indoleamine 2,3-dioxygenase 1; Catalyzes the first and rate limiting step of the catabolism of the essential amino acid tryptophan along the kynurenine pathway. Involved in the peripheral immune tolerance, contributing to maintain homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. Tryptophan shortage inhibits T lymphocytes division and accumulation of tryptophan catabolites induces T-cell apoptosis and differentiation of regulatory T-cells. Acts as a suppressor of anti-tumor immunity. Limits the growth of int [...] | 0.819 |
Haao | Ido2 | ENSMUSP00000000687 | ENSMUSP00000113979 | 3-hydroxyanthranilate 3,4-dioxygenase; Catalyzes the oxidative ring opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinate. | Indoleamine 2,3-dioxygenase 2; Catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan catabolism. Involved in immune regulation. | 0.829 |