Your Input: | |||||
| Tmem127 | Transmembrane protein 127; Controls cell proliferation acting as a negative regulator of TOR signaling pathway mediated by mTORC1. May act as a tumor suppressor; Belongs to the TMEM127 family. (238 aa) | ||||
| Rnf167 | E3 ubiquitin-protein ligase RNF167; May act as an E3 ubiquitin-protein ligase, or as part of the E3 complex, which accepts ubiquitin from specific E2 ubiquitin- conjugating enzymes, such as UBE2E1, and then transfers it to substrates, such as SLC22A18. May play a role in growth regulation involved in G1/S transition. (347 aa) | ||||
| Bmt2 | S-adenosylmethionine sensor upstream of mTORC1; S-adenosyl-L-methionine-binding protein that acts as an inhibitor of mTORC1 signaling via interaction with the GATOR1 and KICSTOR complexes. Acts as a sensor of S-adenosyl-L-methionine to signal methionine sufficiency to mTORC1: in presence of methionine, binds S-adenosyl-L-methionine, leading to disrupt interaction with the GATOR1 and KICSTOR complexes and promote mTORC1 signaling. Upon methionine starvation, S-adenosyl-L-methionine levels are reduced, thereby promoting the association with GATOR1 and KICSTOR, leading to inhibit mTORC1 s [...] (403 aa) | ||||
| Minar1 | Major intrinsically disordered Notch2-binding receptor 1; Intrinsically disordered protein which may negatively regulate mTOR signaling pathway by stabilizing the mTOR complex component DEPTOR. Negatively regulates angiogenesis. Negatively regulates cell growth (By similarity). Negatively regulates neurite outgrowth in hippocampal neurons (By similarity). (917 aa) | ||||
| Fnip1 | Folliculin-interacting protein 1; Acts as a co-chaperone of HSP90AA1. Inhibits the ATPase activity of HSP90AA1 leading to reduction in its chaperone activity. Facilitates the binding of client protein FLCN to HSP90AA1. Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. May be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. May regulate phosphorylation of RPS6KB1. (1165 aa) | ||||
| Rnf152 | E3 ubiquitin-protein ligase RNF152; E3 ubiquitin-protein ligase mediating 'Lys-63'-linked polyubiquitination of RRAGA in response to amino acid starvation. Thereby, regulates mTORC1 signaling and plays a role in the cellular response to amino acid availability. Also mediates 'Lys-48'-linked polyubiquitination of target proteins and their subsequent targeting to the proteasome for degradation. Induces apoptosis when overexpressed (By similarity). (203 aa) | ||||
| Prkaa1 | 5'-AMP-activated protein kinase catalytic subunit alpha-1; Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts a [...] (559 aa) | ||||
| Atm | Serine-protein kinase ATM; Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]- Q. Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism. Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospec [...] (3066 aa) | ||||
| Spaar | Small regulatory polypeptide of amino acid response; Negative regulator of amino acid sensing and mTORC1, a signaling complex promoting cell growth in response to growth factors, energy levels and amino acids (By similarity). Negatively regulates mTORC1 activation by inhibiting recruitment of mTORC1 to lysosomes upon stimulation with amino acids: acts by promoting the formation of a tightly bound supercomplex composed of the lysosomal V-ATPase, Ragulator and Rag GTPases, preventing recruitment of mTORC1 (By similarity). Acts as a regulator of muscle regeneration following injury by reg [...] (75 aa) | ||||
| Arntl | Aryl hydrocarbon receptor nuclear translocator-like protein 1; Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressur [...] (626 aa) | ||||
| Sesn3 | Sestrin-3; May function as an intracellular leucine sensor that negatively regulates the TORC1 signaling pathway. May also regulate the insulin-receptor signaling pathway through activation of TORC2. This metabolic regulator may also play a role in protection against oxidative and genotoxic stresses (By similarity); Belongs to the sestrin family. (492 aa) | ||||
| Tbc1d7 | TBC1 domain family member 7; Component of the TSC-TBC complex, that contains TBC1D7 in addition to the TSC1-TSC2 complex and consists of the functional complex possessing GTPase-activating protein (GAP) activity toward RHEB in response to alterations in specific cellular growth conditions. The small GTPase RHEB is a direct activator of the protein kinase activity of mTORC1 and the TSC-TBC complex acts as a negative regulator of mTORC1 signaling cascade by acting as a GAP for RHEB. Participates in the proper sensing of growth factors and glucose, but not amino acids, by mTORC1. It is un [...] (293 aa) | ||||
| Mtm1 | Myotubularin; Lipid phosphatase which dephosphorylates phosphatidylinositol 3-monophosphate (PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). Has also been shown to dephosphorylate phosphotyrosine- and phosphoserine-containing peptides. Negatively regulates EGFR degradation through regulation of EGFR trafficking from the late endosome to the lysosome. Plays a role in vacuolar formation and morphology (By similarity). Regulates desmin intermediate filament assembly and architecture. Plays a role in mitochondrial morphology and positioning. Required for skeletal muscle mainte [...] (603 aa) | ||||
| Depdc5 | GATOR complex protein DEPDC5; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway. (1591 aa) | ||||
| Sirt1 | NAD-dependent protein deacetylase sirtuin-1; NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (By similarity). Deacetylates a broad range of transcription factors and coregulators, thereby regulating ta [...] (737 aa) | ||||
| Gsk3b | Glycogen synthase kinase-3 beta; Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glyc [...] (433 aa) | ||||
| Tsc1 | Hamartin; In complex with TSC2, inhibits the nutrient-mediated or growth factor-stimulated phosphorylation of S6K1 and EIF4EBP1 by negatively regulating mTORC1 signaling (By similarity). Implicated as a tumor suppressor. Involved in microtubule-mediated protein transport, but this seems to be due to unregulated mTOR signaling. Acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1. Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity. Competes with the activating co-chaperone AH [...] (1161 aa) | ||||
| Ubr2 | E3 ubiquitin-protein ligase UBR2; E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N- terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. Plays a critical role in chromatin inactivation and chromosome-wide transcriptional silencing during meiosis via ubiquitination of histone H2A. Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (By similarity). Required for spermatogene [...] (1755 aa) | ||||
| Akt1s1 | Proline-rich AKT1 substrate 1; Subunit of mTORC1, which regulates cell growth and survival in response to nutrient and hormonal signals. mTORC1 is activated in response to growth factors or amino acids. Growth factor-stimulated mTORC1 activation involves a AKT1-mediated phosphorylation of TSC1- TSC2, which leads to the activation of the RHEB GTPase that potently activates the protein kinase activity of mTORC1. Amino acid-signaling to mTORC1 requires its relocalization to the lysosomes mediated by the Ragulator complex and the Rag GTPases. Activated mTORC1 up-regulates protein synthesis [...] (283 aa) | ||||
| Flcn | Folliculin; May be a tumor suppressor. May be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways. May regulate phosphorylation of RPS6KB1; Belongs to the folliculin family. (579 aa) | ||||
| Adam1a | Disintegrin and metalloproteinase domain-containing protein 1a; May be involved in sperm-egg fusion. (791 aa) | ||||
| Sesn1 | Sestrin-1; Functions as an intracellular leucine sensor that negatively regulates the TORC1 signaling pathway through the GATOR complex. In absence of leucine, binds the GATOR subcomplex GATOR2 and prevents TORC1 signaling. Binding of leucine to SESN2 disrupts its interaction with GATOR2 thereby activating the TORC1 signaling pathway. This stress-inducible metabolic regulator may also play a role in protection against oxidative and genotoxic stresses. May positively regulate the transcription by NFE2L2 of genes involved in the response to oxidative stress by facilitating the SQSTM1-med [...] (551 aa) | ||||
| Epm2a | Laforin; Plays an important role in preventing glycogen hyperphosphorylation and the formation of insoluble aggregates, via its activity as glycogen phosphatase, and by promoting the ubiquitination of proteins involved in glycogen metabolism via its interaction with the E3 ubiquitin ligase NHLRC1/malin. Dephosphorylates phosphotyrosine and synthetic substrates, such as para-nitrophenylphosphate (pNPP), and has low activity with phosphoserine and phosphothreonine substrates (in vitro). Has also been shown to dephosphorylate MAPT. Shows strong phosphatase activity towards complex carbohy [...] (330 aa) | ||||
| Tsc2 | Tuberin; In complex with TSC1, this tumor suppressor inhibits the nutrient-mediated or growth factor-stimulated phosphorylation of S6K1 and EIF4EBP1 by negatively regulating mTORC1 signaling (By similarity). Acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (By similarity). May also play a role in microtubule-mediated protein transport. Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). (1742 aa) | ||||
| Deptor | DEP domain-containing mTOR-interacting protein; Negative regulator of the mTORC1 and mTORC2 signaling pathways. Inhibits the kinase activity of both complexes (By similarity). (409 aa) | ||||
| Cryba1 | Beta-crystallin A1; Crystallins are the dominant structural components of the vertebrate eye lens. (215 aa) | ||||
| Tnfaip8l1 | Tumor necrosis factor alpha-induced protein 8-like protein 1; Acts as a negative regulator of mTOR activity. (186 aa) | ||||
| Szt2 | KICSTOR complex protein SZT2; As part of the KICSTOR complex functions in the amino acid- sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids (By similarity). In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation o [...] (3431 aa) | ||||
| Gsk3a | Glycogen synthase kinase-3 alpha; Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), CTNNB1/beta-catenin, APC and AXIN1. Requires primed phosphorylation of the majority of its substrates. Contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. Regulates glycogen metabolism in liver, but not in muscle. M [...] (490 aa) | ||||
| Sh3bp4 | SH3 domain-binding protein 4; May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy (By similarity). (962 aa) | ||||
| Alg13 | Putative bifunctional UDP-N-acetylglucosamine transferase and deubiquitinase ALG13; [Isoform 1]: Possible multifunctional enzyme with both glycosyltransferase and deubiquitinase activities. (165 aa) | ||||
| BC048403 | KICSTOR complex protein C12orf66 homolog; As part of the KICSTOR complex functions in the amino acid- sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mT [...] (445 aa) | ||||
| Itfg2 | KICSTOR complex protein ITFG2; As part of the KICSTOR complex functions in the amino acid- sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose. (443 aa) | ||||
| Stk11 | Serine/threonine-protein kinase STK11; Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP [...] (436 aa) | ||||
| Kptn | KICSTOR complex protein kaptin; As part of the KICSTOR complex functions in the amino acid- sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose. (430 aa) | ||||
| Nprl2 | GATOR complex protein NPRL2; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway; Belongs to the NPR2 family. (380 aa) | ||||
| Endog | Endonuclease G, mitochondrial; Cleaves DNA at double-stranded (DG)n.(DC)n and at single- stranded (DC)n tracts. In addition to deoxyribonuclease activities, also has ribonuclease (RNase) and RNase H activities. Capable of generating the RNA primers required by DNA polymerase gamma to initiate replication of mitochondrial DNA (By similarity). (294 aa) | ||||
| Castor2 | Cytosolic arginine sensor for mTORC1 subunit 2; Functions as a negative regulator of the TORC1 signaling pathway through the GATOR complex. As part of homodimers or heterodimers with CASTOR1, directly binds and inhibits the GATOR subcomplex GATOR2 and thereby mTORC1. Does not directly bind arginine, but binding of arginine to CASTOR1 disrupts the interaction of CASTOR2- containing heterodimers with GATOR2 which can in turn activate mTORC1 and the TORC1 signaling pathway. (329 aa) | ||||
| Ddit4 | DNA damage-inducible transcript 4 protein; Regulates cell growth, proliferation and survival via inhibition of the activity of the mammalian target of rapamycin complex 1 (mTORC1). Inhibition of mTORC1 is mediated by a pathway that involves DDIT4/REDD1, AKT1, the TSC1-TSC2 complex and the GTPase RHEB. Plays an important role in responses to cellular energy levels and cellular stress, including responses to hypoxia and DNA damage. Regulates p53/TP53-mediated apoptosis in response to DNA damage via its effect on mTORC1 activity. Its role in the response to hypoxia depends on the cell typ [...] (229 aa) | ||||
| Nprl3 | GATOR complex protein NPRL3; As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway. (569 aa) | ||||
| Castor1 | Cytosolic arginine sensor for mTORC1 subunit 1; Functions as an intracellular arginine sensor within the amino acid-sensing branch of the TORC1 signaling pathway. As a homodimer or a heterodimer with CASTOR2, binds and inhibits the GATOR subcomplex GATOR2 and thereby mTORC1. Binding of arginine to CASTOR1 allosterically disrupts the interaction of CASTOR1-containing dimers with GATOR2 which can in turn activate mTORC1 and the TORC1 signaling pathway; Belongs to the GATS family. (331 aa) | ||||
| Hif1a | Hypoxia-inducible factor 1-alpha; Functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease. Heterodimerizes with ARNT; heterodimer binds to core DNA sequenc [...] (836 aa) | ||||
| Pdcd6 | Programmed cell death protein 6; Calcium sensor that plays a key role in processes such as endoplasmic reticulum (ER)-Golgi vesicular transport, endosomal biogenesis or membrane repair. Acts as an adapter that bridges unrelated proteins or stabilizes weak protein-protein complexes in response to calcium: calcium-binding triggers exposure of apolar surface, promoting interaction with different sets of proteins thanks to 3 different hydrophobic pockets, leading to translocation to membranes. Involved in ER- Golgi transport by promoting the association between PDCD6IP and TSG101, thereby [...] (191 aa) | ||||
| Ubr1 | E3 ubiquitin-protein ligase UBR1; E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N- terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. May be involved in pancreatic homeostasis. Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (By similarity). (1757 aa) | ||||
| Prkaa2 | 5'-AMP-activated protein kinase catalytic subunit alpha-2; Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts a [...] (552 aa) | ||||
| Sesn2 | Sestrin-2; Functions as an intracellular leucine sensor that negatively regulates the TORC1 signaling pathway through the GATOR complex. In absence of leucine, binds the GATOR subcomplex GATOR2 and prevents TORC1 signaling. Binding of leucine to SESN2 disrupts its interaction with GATOR2 thereby activating the TORC1 signaling pathway. This stress-inducible metabolic regulator also plays a role in protection against oxidative and genotoxic stresses. May negatively regulate protein translation in response to endoplasmic reticulum stress, via TORC1. May positively regulate the transcripti [...] (480 aa) | ||||
| Mapkapk5 | MAP kinase-activated protein kinase 5; Tumor suppressor serine/threonine-protein kinase involved in mTORC1 signaling and post-transcriptional regulation. Phosphorylates FOXO3, ERK3/MAPK6, ERK4/MAPK4, HSP27/HSPB1, p53/TP53 and RHEB. Acts as a tumor suppressor by mediating Ras-induced senescence and phosphorylating p53/TP53. Involved in post-transcriptional regulation of MYC by mediating phosphorylation of FOXO3: phosphorylation of FOXO3 leads to promote nuclear localization of FOXO3, enabling expression of miR-34b and miR-34c, 2 post-transcriptional regulators of MYC that bind to the 3' [...] (473 aa) | ||||