Your Input: | |||||
Mtrr | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. (696 aa) | ||||
Txnrd3 | Thioredoxin reductase 3; Displays thioredoxin reductase, glutaredoxin and glutathione reductase activities. Catalyzes disulfide bond isomerization. Promotes disulfide bond formation between GPX4 and various sperm proteins and may play a role in sperm maturation by promoting formation of sperm structural components; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (615 aa) | ||||
Aox1 | Aldehyde oxidase 1; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide, N-methylphthalazinium and phthalazine, as well as aldehydes, such as benzaldehyde, retinal, pyridoxal, and vanillin. Plays a role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Participates in the bioactivation of prodrugs such as famciclovir, catalyzing the oxidation step from 6-deoxypenciclovir to penciclovir, which is a potent antiviral agent. Also plays a role in the reductive metabolism of the xenobiotic imid [...] (1333 aa) | ||||
Prodh | Proline dehydrogenase 1, mitochondrial; Converts proline to delta-1-pyrroline-5-carboxylate. (599 aa) | ||||
Gcdh | Glutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L- hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor; Belongs to the acyl-CoA dehydrogenase family. (447 aa) | ||||
Por | NADPH--cytochrome P450 reductase; This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5; In the N-terminal section; belongs to the flavodoxin family. (678 aa) | ||||
Dus3l | tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like; Catalyzes the synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs. (637 aa) | ||||
Acad9 | Complex I assembly factor ACAD9, mitochondrial; As part of the MCIA complex, primarily participates to the assembly of the mitochondrial complex I and therefore plays a role in oxidative phosphorylation. This moonlighting protein has also a dehydrogenase activity toward a broad range of substrates with greater specificity for long-chain unsaturated acyl-CoAs. However, in vivo, it does not seem to play a primary role in fatty acid oxidation. In addition, the function in complex I assembly is independent of the dehydrogenase activity of the protein. (625 aa) | ||||
Cybb | Cytochrome b-245 heavy chain; Critical component of the membrane-bound oxidase of phagocytes that generates superoxide. It is the terminal component of a respiratory chain that transfers single electrons from cytoplasmic NADPH across the plasma membrane to molecular oxygen on the exterior. Also functions as a voltage-gated proton channel that mediates the H(+) currents of resting phagocytes. (570 aa) | ||||
Acadsb | Short/branched chain specific acyl-CoA dehydrogenase, mitochondrial; Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2- methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent (By similarity). (432 aa) | ||||
Foxred2 | FAD-dependent oxidoreductase domain-containing protein 2; Probable flavoprotein which may function in endoplasmic reticulum associated degradation (ERAD). May bind non-native proteins in the endoplasmic reticulum and target them to the ubiquitination machinery for subsequent degradation (By similarity). (665 aa) | ||||
Pipox | Peroxisomal sarcosine oxidase; Metabolizes sarcosine, L-pipecolic acid and L-proline. (390 aa) | ||||
Cyb5r3 | NADH-cytochrome b5 reductase 3 membrane-bound form; Desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. (301 aa) | ||||
Nos2 | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2. As component of the iNOS- S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM (By similarity [...] (1144 aa) | ||||
Mical1 | [F-actin]-monooxygenase MICAL1; Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (By similarity). Acts as a cytoskeletal regulator that connects NEDD9 to intermediate filaments. Also acts as a negative regulator of apoptosis via its interaction with STK38 and STK38L; acts by antagonizing STK38 and STK38L activation by MST1/STK4. Involv [...] (1048 aa) | ||||
Ddo | D-aspartate oxidase; Selectively catalyzes the oxidative deamination of D- aspartate and its N-methylated derivative, N-methyl D-aspartate. Belongs to the DAMOX/DASOX family. (341 aa) | ||||
Cry1 | Cryptochrome-1; Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal [...] (606 aa) | ||||
Dus4l | tRNA-dihydrouridine(20a/20b) synthase [NAD(P)+]-like; Catalyzes the synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs; Belongs to the Dus family. Dus4 subfamily. (324 aa) | ||||
Sdha | Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (664 aa) | ||||
Ero1l | ERO1-like protein alpha; Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (By similarity). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-tri [...] (464 aa) | ||||
Sqle | Squalene monooxygenase; Catalyzes the stereospecific oxidation of squalene to (S)- 2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. (572 aa) | ||||
Xdh | Xanthine dehydrogenase/oxidase; Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. (1335 aa) | ||||
Maoa | Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity). (526 aa) | ||||
Acadl | Long-chain specific acyl-CoA dehydrogenase, mitochondrial; Long-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats. The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl-CoA (By similarity). Among the different mitochondrial acyl-CoA dehydrogenas [...] (430 aa) | ||||
Cyb5r1 | NADH-cytochrome b5 reductase 1; NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. (305 aa) | ||||
Fmo9 | Dimethylaniline monooxygenase [N-oxide-forming]. (539 aa) | ||||
Fmo3 | Dimethylaniline monooxygenase [N-oxide-forming] 3; Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds. Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite. TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thr [...] (534 aa) | ||||
Ivd | Isovaleryl-CoA dehydrogenase, mitochondrial; Belongs to the acyl-CoA dehydrogenase family. (424 aa) | ||||
Acoxl | Acyl-coenzyme A oxidase-like protein; Belongs to the acyl-CoA oxidase family. (632 aa) | ||||
Mmachc | Methylmalonic aciduria and homocystinuria type C protein homolog; Catalyzes the reductive dealkylation of cyanocobalamin to cob(II)alamin, using FAD or FMN as cofactor and NADPH as cosubstrate. Can also catalyze the glutathione-dependent reductive demethylation of methylcobalamin, and, with much lower efficiency, the glutathione- dependent reductive demethylation of adenosylcobalamin. Under anaerobic conditions cob(I)alamin is the first product; it is highly reactive and is converted to aquocob(II)alamin in the presence of oxygen. Binds cyanocobalamin, adenosylcobalamin, methylcobalami [...] (279 aa) | ||||
Nos3 | Nitric oxide synthase, endothelial; Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. May play a significant role in normal and abnormal limb development; Belongs to the NOS family. (1202 aa) | ||||
Acad10 | Acyl-CoA dehydrogenase family member 10; Acyl-CoA dehydrogenase only active with R- and S-2-methyl- C15-CoA. (1069 aa) | ||||
Acads | Short-chain specific acyl-CoA dehydrogenase, mitochondrial; Short-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats. The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl-CoA. Among the different mitochondrial acyl-CoA dehydrogenases, short-chai [...] (412 aa) | ||||
Pcyox1 | Prenylcysteine oxidase; Involved in the degradation of prenylated proteins. Cleaves the thioether bond of prenyl-L-cysteines, such as farnesylcysteine and geranylgeranylcysteine (By similarity); Belongs to the prenylcysteine oxidase family. (505 aa) | ||||
Gsr | Glutathione reductase, mitochondrial; Maintains high levels of reduced glutathione in the cytosol. (500 aa) | ||||
Dus2 | tRNA-dihydrouridine(20) synthase [NAD(P)+]-like; Dihydrouridine synthase. Catalyzes the NADPH-dependent synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs. Negatively regulates the activation of EIF2AK2/PKR. Belongs to the Dus family. Dus2 subfamily. (493 aa) | ||||
Etfa | Electron transfer flavoprotein subunit alpha, mitochondrial; Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF- ubiquinone oxidoreductase (ETF dehydrogenase). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism. (333 aa) | ||||
Mto1 | Protein MTO1 homolog, mitochondrial; Involved in the 5-carboxymethylaminomethyl modification (mnm(5)s(2)U34) of the wobble uridine base in mitochondrial tRNAs. Belongs to the MnmG family. (669 aa) | ||||
Qsox1 | Sulfhydryl oxidase 1; Catalyzes the oxidation of sulfhydryl groups in peptide and protein thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Plays a role in disulfide bond formation in a variety of extracellular proteins. In fibroblasts, required for normal incorporation of laminin into the extracellular matrix, and thereby for normal cell-cell adhesion and cell migration. (748 aa) | ||||
Pyroxd1 | Pyridine nucleotide-disulfide oxidoreductase domain-containing protein 1; Probable FAD-dependent oxidoreductase; involved in the cellular oxidative stress response (By similarity). Required for normal sarcomere structure and muscle fiber integrity (By similarity). (498 aa) | ||||
Fmo1 | Dimethylaniline monooxygenase [N-oxide-forming] 1; This protein is involved in the oxidative metabolism of a variety of xenobiotics such as drugs and pesticides. Form I catalyzes the N-oxygenation of secondary and tertiary amines. (532 aa) | ||||
Dhcr24 | Delta(24)-sterol reductase; Catalyzes the reduction of the delta-24 double bond of sterol intermediates during cholesterol biosynthesis. In addition to its cholesterol-synthesizing activity, can protects cells from oxidative stress by reducing caspase 3 activity during apoptosis induced by oxidative stress. Also protects against amyloid-beta peptide-induced apoptosis (By similarity). (516 aa) | ||||
Kdm1b | Lysine-specific histone demethylase 1B; Histone demethylase that demethylates 'Lys-4' of histone H3, a specific tag for epigenetic transcriptional activation, thereby acting as a corepressor. Required for de novo DNA methylation of a subset of imprinted genes during oogenesis. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Demethylates both mono- and di-methylated 'Lys-4' of histone H3. Has no effect on tri-methylated 'Lys-4', mono-, di- or tri-methylated 'Lys-9', mono-, di- or tri-methylated 'Lys-27', mono-, di- or tri-methy [...] (826 aa) | ||||
Kmo | Kynurenine 3-monooxygenase; Catalyzes the hydroxylation of L-kynurenine (L-Kyn) to form 3-hydroxy-L-kynurenine (L-3OHKyn). Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA receptor signaling in pancreatic beta cells, osteoblasts, myocardial cells, and the gastrointestinal tract. (479 aa) | ||||
Dpyd | Dihydropyrimidine dehydrogenase [NADP(+)]; Involved in pyrimidine base degradation. Catalyzes the reduction of uracil and thymine (By similarity). (1025 aa) | ||||
Dmgdh | Dimethylglycine dehydrogenase, mitochondrial; Catalyzes the demethylation of N,N-dimethylglycine to sarcosine. Also has activity with sarcosine in vitro. (869 aa) | ||||
Gm4847 | Dimethylaniline monooxygenase [N-oxide-forming]. (537 aa) | ||||
Maob | Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity). (520 aa) | ||||
Aifm1 | Apoptosis-inducing factor 1, mitochondrial; Functions both as NADH oxidoreductase and as regulator of apoptosis (By similarity). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway. The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA. Binds to DNA in a sequence- independent manner. Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthe [...] (612 aa) | ||||
Agps | Alkyldihydroxyacetonephosphate synthase, peroxisomal; Catalyzes the exchange of the acyl chain in acyl- dihydroxyacetonephosphate (acyl-DHAP) for a long chain fatty alcohol, yielding the first ether linked intermediate, i.e. alkyl- dihydroxyacetonephosphate (alkyl-DHAP), in the pathway of ether lipid biosynthesis; Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (671 aa) | ||||
Acad11 | Acyl-CoA dehydrogenase family member 11; Acyl-CoA dehydrogenase, that exhibits maximal activity towards saturated C22-CoA. Probably participates to beta-oxydation and energy production but could also play role in the metabolism of specific fatty acids to control fatty acids composition of cellular lipids in brain. (779 aa) | ||||
Fmo2 | Dimethylaniline monooxygenase [N-oxide-forming] 2; This protein is involved in the oxidative metabolism of a variety of xenobiotics such as drugs and pesticides. Shows catalytic activity towards methimazole, thiourea, trimethylamine, and the insecticide phorate; Belongs to the FMO family. (535 aa) | ||||
Acad12 | Acyl-Coenzyme A dehydrogenase family, member 12. (555 aa) | ||||
Mical2 | [F-actin]-monooxygenase MICAL2; Nuclear monooxygenase that promotes depolymerization of F- actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (By similarity). Acts as a key regulator of the SRF signaling pathway elicited by nerve growth factor and serum: mediates oxidation and subsequent depolymerization of nuclear actin, leading to increase MKL1/MRTF-A presence in the nucleus and promo [...] (1102 aa) | ||||
Aox4 | Aldehyde oxidase 4; Aldehyde oxidase able to catalyze the oxidation of retinaldehyde into retinoate. Is responsible for the major all-trans- retinaldehyde-metabolizing activity in the Harderian gland, and contributes a significant amount of the same activity in the skin. Is devoid of pyridoxal-oxidizing activity, in contrast to the other aldehyde oxidases. Acts as a negative modulator of the epidermal trophism. May be able to oxidize a wide variety of aldehydes into their corresponding carboxylates and to hydroxylate azaheterocycles. Belongs to the xanthine dehydrogenase family. (1336 aa) | ||||
Gfer | FAD-linked sulfhydryl oxidase ALR; FAD-dependent sulfhydryl oxidase that regenerates the redox- active disulfide bonds in CHCHD4/MIA40, a chaperone essential for disulfide bond formation and protein folding in the mitochondrial intermembrane space. The reduced form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with GFER/ERV1, resulting in regeneration of the essential disulfide bonds in CHCHD4/MIA40, while GFER/ERV1 becomes re-oxidized by donating electrons to cytochrome c or molecular oxygen (By similarity). (198 aa) | ||||
Aox3 | Aldehyde oxidase 3; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide and phthalazine, as well as aldehydes, such as benzaldehyde, retinal and pyridoxal. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Is probably involved in the regulation of reactive oxygen species homeostasis. May be a prominent source of superoxide generation via the one-electron reduction of molecular oxygen. Also may catalyze nitric oxide (NO) production via the reduction of nitrite to NO with N [...] (1335 aa) | ||||
Cyb5r2 | NADH-cytochrome b5 reductase 2; NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. Responsible for NADH-dependent lucigenin chemiluminescence in spermatozoa by reducing both lucigenin and 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4- disulfophenyl]-2H tetrazolium monosodium salt (WST-1) (By similarity). Belongs to the flavoprotein pyridine nucleotide cytochrome reductase family. (292 aa) | ||||
Nqo2 | Ribosyldihydronicotinamide dehydrogenase [quinone]; The enzyme apparently serves as a quinone reductase in connection with conjugation reactions of hydroquinones involved in detoxification pathways as well as in biosynthetic processes such as the vitamin K-dependent gamma-carboxylation of glutamate residues in prothrombin synthesis. (231 aa) | ||||
Acad8 | Isobutyryl-CoA dehydrogenase, mitochondrial; Isobutyryl-CoA dehydrogenase which catalyzes one of the steps of the valine catabolic pathway. To a lesser extent, is also able to catalyze the oxidation of (2S)-2-methylbutanoyl-CoA. (413 aa) | ||||
Gulo | L-gulonolactone oxidase; Oxidizes L-gulono-1,4-lactone to hydrogen peroxide and L- xylo-hexulonolactone which spontaneously isomerizes to L-ascorbate. Belongs to the oxygen-dependent FAD-linked oxidoreductase family. (440 aa) | ||||
Prodh2 | Hydroxyproline dehydrogenase; Dehydrogenase that converts trans-4-L-hydroxyproline to delta-1-pyrroline-3-hydroxy-5-carboxylate (Hyp) using ubiquinone-10 as the terminal electron acceptor. Can also use proline as a substrate but with a very much lower efficiency. Does not react with other diastereomers of Hyp: trans-4-D-hydroxyproline and cis-4-L- hydroxyproline. Ubiquininone analogs such as menadione, duroquinone and ubiquinone-1 react more efficiently than oxygen as the terminal electron acceptor during catalysis. (456 aa) | ||||
Acox1 | Peroxisomal acyl-CoA oxidase 1, A chain; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs (By similarity). Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length (By similarity). Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs (By similarity). (661 aa) | ||||
Acox3 | Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids. (700 aa) | ||||
Chdh | Choline dehydrogenase, mitochondrial; Belongs to the GMC oxidoreductase family. (596 aa) | ||||
Ldhd | Probable D-lactate dehydrogenase, mitochondrial; Involved in D-lactate, but not L-lactate catabolic process. Belongs to the FAD-binding oxidoreductase/transferase type 4 family. (484 aa) | ||||
Mthfr | Methylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. (695 aa) | ||||
Ero1lb | ERO1-like protein beta; Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Other protein disulfide isomerase family members can also be reoxidized, but at lower rates compared to P4HB, including PDIA2, PDIA3, PDIA4, PDIA6 and NXNDC12. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell (By similarity). [...] (467 aa) | ||||
Acadm | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial; Acyl-CoA dehydrogenase specific for acyl chain lengths of 4 to 16 that catalyzes the initial step of fatty acid beta-oxidation. Utilizes the electron transfer flavoprotein (ETF) as an electron acceptor to transfer electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). (421 aa) | ||||
Aifm2 | Ferroptosis suppressor protein 1; A NAD(P)H-dependent oxidoreductase involved in cellular oxidative stress response. At the plasma membrane, catalyzes reduction of coenzyme Q/ubiquinone-10 to ubiquinol-10, a lipophilic radical- trapping antioxidant that prevents lipid oxidative damage and consequently ferroptosis. Cooperates with GPX4 to suppress phospholipid peroxidation and ferroptosis. This anti-ferroptotic function is independent of cellular glutathione levels (By similarity). May play a role in mitochondrial oxidative signaling. Upon oxidative stress, associates with the lipid per [...] (380 aa) | ||||
Cry2 | Cryptochrome-2; Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal [...] (592 aa) | ||||
Acadvl | Very long-chain specific acyl-CoA dehydrogenase, mitochondrial; Active toward esters of long-chain and very long chain fatty acids such as palmitoyl-CoA, myristoyl-CoA and stearoyl-CoA. Can accommodate substrate acyl chain lengths as long as 24 carbons, but shows little activity for substrates of less than 12 carbons (By similarity); Belongs to the acyl-CoA dehydrogenase family. (656 aa) | ||||
Sardh | Sarcosine dehydrogenase, mitochondrial; Belongs to the GcvT family. (919 aa) | ||||
Ilvbl | Acetolactate synthase-like protein; Belongs to the TPP enzyme family. (632 aa) | ||||
Kdm1a | Lysine-specific histone demethylase 1A; Histone demethylase that can demethylate both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demet [...] (873 aa) | ||||
Fmo5 | Dimethylaniline monooxygenase [N-oxide-forming] 5; In contrast with other forms of FMO it does not seem to be a drug-metabolizing enzyme. (533 aa) | ||||
Coq6 | Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial; FAD-dependent monooxygenase required for the C5-ring hydroxylation during ubiquinone biosynthesis. Catalyzes the hydroxylation of 3-polyprenyl-4-hydroxybenzoic acid to 3-polyprenyl- 4,5-dihydroxybenzoic acid. The electrons required for the hydroxylation reaction may be funneled indirectly from NADPH via a ferredoxin/ferredoxin reductase system to COQ6. (476 aa) | ||||
Sqor | Sulfide:quinone oxidoreductase, mitochondrial; Catalyzes the oxidation of hydrogen sulfide with the help of a quinone, such as ubiquinone, giving rise to thiosulfate and ultimately to sulfane (molecular sulfur) atoms. Requires an additional electron acceptor; can use sulfite, sulfide or cyanide (in vitro). Belongs to the SQRD family. (450 aa) | ||||
Dld | Dihydrolipoyl dehydrogenase, mitochondrial; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as an E3 component of three alpha-ketoacid dehydrogenase complexes (pyruvate-, alpha-ketoglutarate-, and branched- chain amino acid-dehydrogenase complex) (By similarity). The 2- oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (By similarity). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl-CoA t [...] (509 aa) | ||||
Fmo4 | Dimethylaniline monooxygenase [N-oxide-forming] 4; This protein is involved in the oxidative metabolism of a variety of xenobiotics such as drugs and pesticides; Belongs to the FMO family. (560 aa) | ||||
Dao | D-amino-acid oxidase; Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D-amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids. (345 aa) | ||||
D2hgdh | D-2-hydroxyglutarate dehydrogenase, mitochondrial; Catalyzes the oxidation of D-2-hydroxyglutarate to alpha- ketoglutarate. (557 aa) | ||||
Ndor1 | NADPH-dependent diflavin oxidoreductase 1; Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery. Required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis. Transfers electrons from NADPH to the Fe/S cluster of CIAPIN1. Belongs to the NADPH-dependent diflavin oxidoreductase NDOR1 family. In the C-terminal section; belongs to the flavoprotein pyridine nucleotide cytochrome reductase family. (598 aa) | ||||
Aox2 | Aldehyde oxidase 2; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as phthalazine, as well as aldehydes, such as benzaldehyde and retinal. Cannot use hypoxanthine as substrate. (1345 aa) | ||||
Steap4 | Metalloreductase STEAP4; Integral membrane protein that functions as NADPH-dependent ferric-chelate reductase, using NADPH from one side of the membrane to reduce a Fe(3+) chelate that is bound on the other side of the membrane. Mediates sequential transmembrane electron transfer from NADPH to FAD and onto heme, and finally to the Fe(3+) chelate (By similarity). Can also reduce Cu(2+) to Cu(1+). Plays a role in systemic metabolic homeostasis, integrating inflammatory and metabolic responses. Associated with obesity and insulin-resistance (By similarity). Involved in inflammatory arthri [...] (470 aa) | ||||
Aifm3 | Apoptosis-inducing factor 3; Induces apoptosis through a caspase dependent pathway. Reduces mitochondrial membrane potential (By similarity). (605 aa) | ||||
Nos1 | Nitric oxide synthase, brain; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter. Probably has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such SRR. Isoform NNOS Mu may be an effector enzyme for the dystrophin complex. (1429 aa) | ||||
Gm4846 | Dimethylaniline monooxygenase [N-oxide-forming]. (538 aa) | ||||
Cyb5r4 | Cytochrome b5 reductase 4; NADH-cytochrome b5 reductase involved in endoplasmic reticulum stress response pathway. Plays a critical role in protecting pancreatic beta-cells against oxidant stress, possibly by protecting the cell from excess buildup of reactive oxygen species (ROS). (528 aa) | ||||
Acox2 | Peroxisomal acyl-coenzyme A oxidase 2; Oxidizes the CoA esters of the bile acid intermediates di- and tri-hydroxycoprostanic acids (By similarity). Capable of oxidizing short as well as long chain 2-methyl branched fatty acids (By similarity). (681 aa) | ||||
Dus1l | tRNA-dihydrouridine(16/17) synthase [NAD(P)(+)]-like; Catalyzes the synthesis of dihydrouridine, a modified base found in the D-loop of most tRNAs; Belongs to the Dus family. Dus1 subfamily. (475 aa) | ||||
Fmo6 | Dimethylaniline monooxygenase [N-oxide-forming]. (532 aa) | ||||
Txnrd2 | Thioredoxin reductase 2, mitochondrial; Maintains thioredoxin in a reduced state. Implicated in the defenses against oxidative stress. May play a role in redox-regulated cell signaling. (527 aa) | ||||
Mical3 | [F-actin]-monooxygenase MICAL3; Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and play a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for [...] (1993 aa) | ||||
Txnrd1 | Thioredoxin reductase 1, cytoplasmic; Belongs to the class-I pyridine nucleotide-disulfide oxidoreductase family. (499 aa) |