| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| Cacna1g | Scn10a | ENSMUSP00000098127 | ENSMUSP00000081845 | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | 0.655 |
| Cacna1g | Scn1b | ENSMUSP00000098127 | ENSMUSP00000096148 | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | Sodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of a variety of pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A; Belongs to the sodium channel auxiliary subunit SCN1B (TC 8.A.17) family. | 0.715 |
| Cacna1g | Scn2b | ENSMUSP00000098127 | ENSMUSP00000126826 | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | Sodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity). | 0.806 |
| Cacna1g | Scn3b | ENSMUSP00000098127 | ENSMUSP00000051627 | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | Sodium channel subunit beta-3; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity). | 0.646 |
| Cacna1g | Scn5a | ENSMUSP00000098127 | ENSMUSP00000112838 | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels (By similarity). Belongs to [...] | 0.697 |
| Gja1 | Gja5 | ENSMUSP00000151620 | ENSMUSP00000088264 | Gap junction alpha-1 protein; Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract. May play a role in cell growth inhibition through the regulation of NOV expression and localization [...] | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | 0.991 |
| Gja1 | Scn5a | ENSMUSP00000151620 | ENSMUSP00000112838 | Gap junction alpha-1 protein; Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract. May play a role in cell growth inhibition through the regulation of NOV expression and localization [...] | Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels (By similarity). Belongs to [...] | 0.871 |
| Gja1 | Tbx5 | ENSMUSP00000151620 | ENSMUSP00000018407 | Gap junction alpha-1 protein; Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract. May play a role in cell growth inhibition through the regulation of NOV expression and localization [...] | T-box transcription factor TBX5; DNA-binding protein that regulates the transcription of several genes and is involved in heart development and limb pattern formation. Binds to the core DNA motif of NPPA promoter. | 0.629 |
| Gja5 | Gja1 | ENSMUSP00000088264 | ENSMUSP00000151620 | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | Gap junction alpha-1 protein; Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract. May play a role in cell growth inhibition through the regulation of NOV expression and localization [...] | 0.991 |
| Gja5 | Scn10a | ENSMUSP00000088264 | ENSMUSP00000081845 | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | 0.433 |
| Gja5 | Scn1b | ENSMUSP00000088264 | ENSMUSP00000096148 | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | Sodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of a variety of pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A; Belongs to the sodium channel auxiliary subunit SCN1B (TC 8.A.17) family. | 0.414 |
| Gja5 | Scn5a | ENSMUSP00000088264 | ENSMUSP00000112838 | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels (By similarity). Belongs to [...] | 0.769 |
| Gja5 | Tbx5 | ENSMUSP00000088264 | ENSMUSP00000018407 | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | T-box transcription factor TBX5; DNA-binding protein that regulates the transcription of several genes and is involved in heart development and limb pattern formation. Binds to the core DNA motif of NPPA promoter. | 0.737 |
| Scn10a | Cacna1g | ENSMUSP00000081845 | ENSMUSP00000098127 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Voltage-dependent T-type calcium channel subunit alpha; Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. This channel gives rise to T-type calcium currents. T-type calcium channels belong to the "low-voltage activated (LVA)" group and are strongly blocked by nickel and mibefradil. A particularity of this type of channels is an opening at quite ne [...] | 0.655 |
| Scn10a | Gja5 | ENSMUSP00000081845 | ENSMUSP00000088264 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Gap junction alpha-5 protein; One gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell; Belongs to the connexin family. Alpha-type (group II) subfamily. | 0.433 |
| Scn10a | Scn1b | ENSMUSP00000081845 | ENSMUSP00000096148 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Sodium channel subunit beta-1; Regulatory subunit of multiple voltage-gated sodium channel complexes that play important roles in excitable membranes in brain, heart and skeletal muscle. Enhances the presence of the pore-forming alpha subunit at the cell surface and modulates channel gating characteristics and the rate of channel inactivation. Modulates the activity of a variety of pore-forming alpha subunits, such as SCN1A, SCN2A, SCN3A, SCN4A, SCN5A and SCN10A; Belongs to the sodium channel auxiliary subunit SCN1B (TC 8.A.17) family. | 0.946 |
| Scn10a | Scn2b | ENSMUSP00000081845 | ENSMUSP00000126826 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Sodium channel subunit beta-2; Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity). | 0.931 |
| Scn10a | Scn3b | ENSMUSP00000081845 | ENSMUSP00000051627 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Sodium channel subunit beta-3; Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity). | 0.911 |
| Scn10a | Scn5a | ENSMUSP00000081845 | ENSMUSP00000112838 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | Sodium channel protein type 5 subunit alpha; This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels (By similarity). Belongs to [...] | 0.857 |
| Scn10a | Tbx5 | ENSMUSP00000081845 | ENSMUSP00000018407 | Sodium channel protein type 10 subunit alpha; Tetrodotoxin-resistant channel that mediates the voltage- dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.8/SCN10A subfamily. | T-box transcription factor TBX5; DNA-binding protein that regulates the transcription of several genes and is involved in heart development and limb pattern formation. Binds to the core DNA motif of NPPA promoter. | 0.508 |